Michael J Owen

Cardiff University, Cardiff, Wales, United Kingdom

Are you Michael J Owen?

Claim your profile

Publications (524)4387.28 Total impact

  • Michael J. Owen · Joanne L. Doherty

    No preview · Article · Feb 2016
  • [Show abstract] [Hide abstract]
    ABSTRACT: Importance Schizophrenia is a highly heritable, polygenic condition characterized by a relatively diverse phenotype and frequent comorbid conditions, such as anxiety and depression. At present, limited evidence explains how genetic risk for schizophrenia is manifest in the general population.Objective To investigate the extent to which genetic risk for schizophrenia is associated with different phenotypes during adolescence in a population-based birth cohort.Design, Setting, and Participants This cohort study used data from the Avon Longitudinal Study of Parents and Children (ALSPAC). Of 14 062 children in the birth cohort, genetic data were available for 9912 adolescents. Data were collected periodically from September 6, 1990, and collection is ongoing. Data were analyzed from March 4 to August 13, 2015.Exposures Polygenic risk scores (PRSs) for schizophrenia generated for individuals in the ALSPAC cohort using results of the second Psychiatric Genomics Consortium Schizophrenia genome-wide association study as a training set.Main Outcomes and Measures Logistic regression was used to assess associations between the schizophrenia PRS and (1) psychotic experiences (Psychosis-Like Symptom Interview at 12 and 18 years of age), (2) negative symptoms (Community Assessment of Psychic Experiences at 16.5 years of age), (3) depressive disorder (Development and Well-Being Assessment at 15.5 years of age), and (4) anxiety disorder (Development and Well-Being Assessment at 15.5 years of age) in adolescence.Results Of the 8230 ALSPAC participants whose genetic data passed quality control checks (51.2% male, 48.8% female), 3676 to 5444 participated in assessments from 12 to 18 years of age. The PRSs created using single-nucleotide polymorphisms with a training-set P ≤ .05 threshold were associated with negative symptoms (odds ratio [OR] per SD increase in PRS, 1.21; 95% CI, 1.08-1.36; R2 = 0.007) and anxiety disorder (OR per SD increase in PRS, 1.17; 95% CI, 1.06- 1.29; R2 = 0.005). No evidence was found of an association between schizophrenia PRS and psychotic experiences (OR per SD increase in PRS, 1.08; 95% CI, 0.98-1.19; R2 = 0.001) or depressive disorder (OR per SD increase in PRS, 1.02; 95% CI, 0.91-1.13; R2 = 0.00005). Results were mostly consistent across different training-set P value thresholds and using different cutoffs and measures of the psychopathological outcomes.Conclusions and Relevance This study demonstrates polygenic overlaps between common genetic polymorphisms associated with schizophrenia and negative symptoms and anxiety disorder but not with psychotic experiences or depression. Because the genetic risk for schizophrenia appears to be manifest as anxiety and negative symptoms during adolescence, a greater focus on these phenotypes rather than on psychotic experiences might be required for prediction of transition in at-risk samples.
    No preview · Article · Jan 2016 · JAMA Psychiatry
  • Michael J Owen · Akira Sawa · Preben B Mortensen
    [Show abstract] [Hide abstract]
    ABSTRACT: Schizophrenia is a complex, heterogeneous behavioural and cognitive syndrome that seems to originate from disruption of brain development caused by genetic or environmental factors, or both. Dysfunction of dopaminergic neurotransmission contributes to the genesis of psychotic symptoms, but evidence also points to a widespread and variable involvement of other brain areas and circuits. Disturbances of synaptic function might underlie abnormalities of neuronal connectivity that possibly involves interneurons, but the precise nature, location, and timing of these events are uncertain. At present, treatment mainly consists of antipsychotic drugs combined with psychological therapies, social support, and rehabilitation, but a pressing need for more effective treatments and delivery of services exists. Advances in genomics, epidemiology, and neuroscience have led to great progress in understanding the disorder, and the opportunities for further scientific breakthrough are numerous—but so are the challenges.
    No preview · Article · Jan 2016 · The Lancet
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cognitive impairment is a core feature of schizophrenia but there is limited understanding of the genetic relationship between cognition in the general population and schizophrenia. We examine how common variants associated with schizophrenia en masse contribute to childhood cognitive ability in a population-based sample, and the extent to which common genetic variants associated with childhood cognition explain variation in schizophrenia. Schizophrenia polygenic risk scores were derived from the Psychiatric Genomics Consortium (n = 69 516) and tested for association with IQ, attention, processing speed, working memory, problem solving, and social cognition in over 5000 children aged 8 from the Avon Longitudinal Study of Parents and Children birth cohort. Polygenic scores for these cognitive domains were tested for association with schizophrenia in a large UK schizophrenia sample (n = 11 853). Bivariate genome-wide complex trait analysis (GCTA) estimated the amount of shared genetic factors between schizophrenia and cognitive domains. Schizophrenia polygenic risk score was associated with lower performance IQ (P = .001) and lower full IQ (P = .013). Polygenic score for performance IQ was associated with increased risk for schizophrenia (P = 3.56E-04). Bivariate GCTA revealed moderate genetic correlation between schizophrenia and both performance IQ (r G = -.379, P = 6.62E-05) and full IQ (r G = -.202, P = 5.00E-03), with approximately 14% of the genetic component of schizophrenia shared with that for performance IQ. Our results support the presence of shared common genetic factors between schizophrenia and childhood cognitive ability. We observe a genetic relationship between schizophrenia and performance IQ but not verbal IQ or other cognitive variables, which may have implications for studies utilizing cognitive endophenotypes for psychosis.
    Full-text · Article · Dec 2015 · Schizophrenia Bulletin
  • Source

    Full-text · Dataset · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Most genetic studies assume that the function of a genetic variant is independent of the parent from which it is inherited, but this is not always true. The best known example of parent-of-origin effects arises with respect to alleles at imprinted loci. In classical imprinting, characteristically, either the maternal or paternal copy is expressed, but not both. Only alleles present in one of the parental copies of the gene, the expressed copy, is likely to contribute to disease. It has been postulated that imprinting is important in central nervous system development, and that consequently, imprinted loci may be involved in schizophrenia. If this is true, allowing for parent-of-origin effects might be important in genetic studies of schizophrenia. Here, we use genome-wide association data from one of the world's largest samples (N = 695) of parent schizophrenia-offspring trios to test for parent-of-origin effects. To maximise power, we restricted our analyses to test two main hypotheses. If imprinting plays a disproportionate role in schizophrenia susceptibility, we postulated a) that alleles showing robust evidence for association to schizophrenia from previous genome-wide association studies should be enriched for parent-of-origin effects and b) that genes at loci imprinted in humans or mice should be enriched both for genome-wide significant associations, and in our sample, for parent-of-origin effects. Neither prediction was supported in the present study. We have shown, that it is unlikely that parent-of-origin effects or imprinting play particularly important roles in schizophrenia, although our findings do not exclude such effects at specific loci nor do they exclude such effects among rare alleles.
    Preview · Article · Dec 2015 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Importance The 16p11.2 BP4-BP5 duplication is the copy number variant most frequently associated with autism spectrum disorder (ASD), schizophrenia, and comorbidities such as decreased body mass index (BMI).Objectives To characterize the effects of the 16p11.2 duplication on cognitive, behavioral, medical, and anthropometric traits and to understand the specificity of these effects by systematically comparing results in duplication carriers and reciprocal deletion carriers, who are also at risk for ASD.Design, Setting, and Participants This international cohort study of 1006 study participants compared 270 duplication carriers with their 102 intrafamilial control individuals, 390 reciprocal deletion carriers, and 244 deletion controls from European and North American cohorts. Data were collected from August 1, 2010, to May 31, 2015 and analyzed from January 1 to August 14, 2015. Linear mixed models were used to estimate the effect of the duplication and deletion on clinical traits by comparison with noncarrier relatives.Main Outcomes and Measures Findings on the Full-Scale IQ (FSIQ), Nonverbal IQ, and Verbal IQ; the presence of ASD or other DSM-IV diagnoses; BMI; head circumference; and medical data.Results Among the 1006 study participants, the duplication was associated with a mean FSIQ score that was lower by 26.3 points between proband carriers and noncarrier relatives and a lower mean FSIQ score (16.2-11.4 points) in nonproband carriers. The mean overall effect of the deletion was similar (–22.1 points; P < .001). However, broad variation in FSIQ was found, with a 19.4- and 2.0-fold increase in the proportion of FSIQ scores that were very low (≤40) and higher than the mean (>100) compared with the deletion group (P < .001). Parental FSIQ predicted part of this variation (approximately 36.0% in hereditary probands). Although the frequency of ASD was similar in deletion and duplication proband carriers (16.0% and 20.0%, respectively), the FSIQ was significantly lower (by 26.3 points) in the duplication probands with ASD. There also were lower head circumference and BMI measurements among duplication carriers, which is consistent with the findings of previous studies.Conclusions and Relevance The mean effect of the duplication on cognition is similar to that of the reciprocal deletion, but the variance in the duplication is significantly higher, with severe and mild subgroups not observed with the deletion. These results suggest that additional genetic and familial factors contribute to this variability. Additional studies will be necessary to characterize the predictors of cognitive deficits.
    Full-text · Article · Dec 2015 · JAMA Psychiatry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Young people whose parents have depression have a greatly increased risk of developing a psychiatric disorder, but poor outcomes are not inevitable. Identification of the contributors to mental health resilience in young people at high familial risk is an internationally recognised priority. Our objectives were to identify protective factors that predict sustained good mental health in adolescents with a parent with depression and to test whether these contribute beyond what is explained by parent illness severity.
    Full-text · Article · Dec 2015 · The Lancet Psychiatry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objectives: There is a growing body of evidence suggesting a shared genetic susceptibility between many neuropsychiatric disorders, including schizophrenia, autism, intellectual disability (ID) and epilepsy. The sodium channel, voltage-gated type II α subunit gene SCN2A has been shown to exhibit loss-of-function (LoF) mutations in individuals with seizure disorders, ID, autism and schizophrenia. The role of LoF mutations in schizophrenia is still uncertain with only one such mutation identified to date. Methods: To seek additional evidence for a role for LoF mutations at SCN2A in schizophrenia we performed mutation screening of the entire coding sequence in 980 schizophrenia cases. Given an absence of LoF mutations in a public exome cohort (ESP6500, N=6503), we did not additionally sequence controls. Results: We identified a novel, nonsense (i.e. stop codon) mutation in one case (E169X) that is absent in 4300 European-American and 2203 African-American individuals from the NHLBI Exome Sequencing Project. This is the second LoF allele identified in a schizophrenia case to date. We also show a novel, missense variant, V1282F, that occurs in two cases and is absent in the control dataset. Conclusion: We argue that very rare, LoF mutations at SCN2A act in a moderately penetrant manner to increase the risk of developing several neuropsychiatric disorders including seizure disorders, ID, autism and schizophrenia.
    No preview · Article · Nov 2015 · Psychiatric genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Myoclonus-dystonia (M-D) is a hyperkinetic movement disorder, typically alcohol-responsive upper body myoclonus and dystonia. The majority of autosomal dominant familial cases are caused by epsilon-sarcoglycan gene (SGCE) mutations. Previous publications have observed increased rates of psychiatric disorders amongst SGCE mutation-positive populations. We analyzed the psychiatric data from four international centers, forming the largest cohort to date, to further determine the extent and type of psychiatric disorders in M-D. Methods: Psychiatric data from SGCE mutation-positive M-D cohorts, collected by movement disorder specialists in the Netherlands, United Kingdom, United States, and Germany, were analyzed. These data were collected using standardized, systematic questionnaires allowing classification of symptoms according to Diagnostic and Statistical Manual of Mental Disorders, fourth edition (DSM-IV) criteria. Based on motor findings and SGCE mutation analysis, participants were classified into one of three groups: manifesting carriers, nonmanifesting carriers and noncarriers. Results: Data from 307 participants were evaluated (140 males, 167 females, mean age at examination: 42.5 years). Two-thirds of motor affected mutation carriers (n = 132) had ≥1 psychiatric diagnosis, specific, and social phobias being most common followed by alcohol dependence and obsessive-compulsive disorder (OCD). Compared to familial controls, affected mutation carriers had significantly elevated overall rates of psychiatric disorders (P < 0.001). The most significant differences were observed with alcohol dependence (P < 0.001), OCD (P < 0.001), social and specific phobias (P < 0.001). Interpretation: M-D due to SGCE mutations is associated with specific psychiatric disorders, most commonly OCD, anxiety-related disorders, and alcohol dependence. These suggest either a potential pleiotropic function for SGCE within the central nervous system or a secondary effect of the motor disorder.
    Full-text · Article · Nov 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Contemporary psychiatry faces major challenges. Its syndrome-based disease classification is not based on mechanisms and does not guide treatment, which largely depends on trial and error. The development of therapies is hindered by ignorance of potential beneficiary patient subgroups. Neuroscientific and genetics research have yet to affect disease definitions or contribute to clinical decision making. In this challenging setting, what should psychiatric research focus on? In two companion papers, we present a list of problems nominated by clinicians and researchers from different disciplines as candidates for future scientific investigation of mental disorders. These problems are loosely grouped into challenges concerning nosology and diagnosis (this Personal View) and problems related to pathogenesis and aetiology (in the companion Personal View). Motivated by successful examples in other disciplines, particularly the list of Hilbert's problems in mathematics, this subjective and eclectic list of priority problems is intended for psychiatric researchers, helping to re-focus existing research and providing perspectives for future psychiatric science.
    Full-text · Article · Nov 2015 · The Lancet Psychiatry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This is the second of two companion papers proposing priority problems for research on mental disorders. Whereas the first paper focuses on questions of nosology and diagnosis, this Personal View concerns pathogenesis and aetiology of psychiatric diseases. We hope that this (non-exhaustive and subjective) list of problems, nominated by scientists and clinicians from different fields and institutions, provides guidance and perspectives for choosing future directions in psychiatric science.
    Full-text · Article · Nov 2015 · The Lancet Psychiatry
  • [Show abstract] [Hide abstract]
    ABSTRACT: A substantial proportion of schizophrenia liability can be explained by additive genetic factors. Risk profile scores (RPS) directly index risk using a summated total of common risk variants weighted by their effect. Previous studies suggest that schizophrenia RPS predict alterations to neural networks that support working memory and verbal fluency. In this study, we apply schizophrenia RPS to fMRI data to elucidate the effects of polygenic risk on functional brain networks during a probabilistic-learning neuroimaging paradigm. The neural networks recruited during this paradigm have previously been shown to be altered to unmedicated schizophrenia patients and relatives of schizophrenia patients, which may reflect genetic susceptibility. We created schizophrenia RPS using summary data from the Psychiatric Genetic Consortium (Schizophrenia Working Group) for 83 healthy individuals and explore associations between schizophrenia RPS and blood oxygen level dependency (BOLD) during periods of choice behavior (switch-stay) and reflection upon choice outcome (reward-punishment). We show that schizophrenia RPS is associated with alterations in the frontal pole (PWHOLE-BRAIN-CORRECTED = 0.048) and the ventral striatum (PROI-CORRECTED = 0.036), during choice behavior, but not choice outcome. We suggest that the common risk variants that increase susceptibility to schizophrenia can be associated with alterations in the neural circuitry that support the processing of changing reward contingencies. Hum Brain Mapp, 2015. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Oct 2015 · Human Brain Mapping
  • Jeremy Hall · Michael J. Owen
    [Show abstract] [Hide abstract]
    ABSTRACT: Current classification systems treat developmental and adult psychopathologies as separate. However, as risk factors for psychiatric disorders are identified it is increasingly clear that these can lead to multiple outcomes across different developmental stages. Research and classification schemes will therefore in the future need to adopt a lifespan approach to risk.
    No preview · Article · Oct 2015 · The British Journal of Psychiatry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This review summarises genetic studies in which calcium channel genes have been connected to the spectrum of neuropsychiatric syndromes, from bipolar disorder and schizophrenia to autism spectrum disorders and intellectual impairment. Among many other genes, striking numbers of the calcium channel gene superfamily have been implicated in the aetiology of these diseases by various DNA analysis techniques. We will discuss how these relate to the known monogenic disorders associated with point mutations in calcium channels. We will then examine the functional evidence for a causative link between these mutations or single nucleotide polymorphisms and the disease processes. A major challenge for the future will be to translate the expanding psychiatric genetic findings into altered physiological function, involvement in the wider pathology of the diseases, and what potential that provides for personalised and stratified treatment options for patients.
    Preview · Article · Sep 2015 · Progress in Neurobiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7×) or exomes (high read depth, 80×) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.
    Full-text · Article · Sep 2015 · Nature
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The contribution of rare and low-frequency variants to human traits is largely unexplored. Here we describe insights from sequencing whole genomes (low read depth, 7×) or exomes (high read depth, 80×) of nearly 10,000 individuals from population-based and disease collections. In extensively phenotyped cohorts we characterize over 24 million novel sequence variants, generate a highly accurate imputation reference panel and identify novel alleles associated with levels of triglycerides (APOB), adiponectin (ADIPOQ) and low-density lipoprotein cholesterol (LDLR and RGAG1) from single-marker and rare variant aggregation tests. We describe population structure and functional annotation of rare and low-frequency variants, use the data to estimate the benefits of sequencing for association studies, and summarize lessons from disease-specific collections. Finally, we make available an extensive resource, including individual-level genetic and phenotypic data and web-based tools to facilitate the exploration of association results.
    Full-text · Article · Sep 2015 · Nature
  • Source

    Full-text · Article · Sep 2015 · Nature Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: Although attention deficit-hyperactivity disorder (ADHD) is the most prevalent psychiatric disorder in children with 22q11.2DS, it remains unclear whether its clinical presentation is similar to that in children with idiopathic ADHD. The aim of this study is to compare the ADHD phenotype in children with and without 22q11.2DS by examining ADHD symptom scores, patterns of psychiatric comorbidity, IQ and gender distribution. Methods: Forty-four children with 22q11.2DS and ADHD (mean age = 9.6), 600 clinic children (mean age = 10.8) and 77 children with ADHD from a population cohort (mean age = 10.8) participated in the study. Psychopathology was assessed using parent-report research diagnostic instruments. Results: There was a higher proportion of females in the 22q11.2DS ADHD sample in relation to the clinical sample (χ2 = 18.2, P < 0.001). The 22q11.2DS group showed a higher rate of ADHD inattentive subtype (χ2 = 114.76, P < 0.001), and fewer hyperactive-impulsive symptoms compared to the clinical group (z = 8.43, P < 0.001). The 22q11.2DS ADHD group parents reported fewer oppositional defiant disorder/conduct disorder symptoms (z = 6.33, P < 0.001) and a higher rate of generalized anxiety disorder (χ2 = 4.56, P = 0.03) in relation to the clinical group. Two percent of the 22q11.2 DS ADHD sample had received ADHD treatment. The results were similar when the 22q11.2 ADHD group was compared to the population cohort ADHD group. Conclusions: The clinical presentation of ADHD and patterns of co-morbidity in 22q11.2DS is different from that in idiopathic ADHD. This could lead to clinical under-recognition of ADHD in this group. Examining psychopathology in 22q11.2DS can provide insights into the genetic origins of psychiatric problems with implications beyond the 22q11.2DS population.
    Full-text · Article · Sep 2015 · American Journal of Medical Genetics Part B Neuropsychiatric Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A long-standing epidemiological puzzle is the reduced rate of rheumatoid arthritis (RA) in those with schizophrenia (SZ) and vice versa. Traditional epidemiological approaches to determine if this negative association is underpinned by genetic factors would test for reduced rates of one disorder in relatives of the other, but sufficiently powered data sets are difficult to achieve. The genomics era presents an alternative paradigm for investigating the genetic relationship between two uncommon disorders. We use genome-wide common single nucleotide polymorphism (SNP) data from independently collected SZ and RA case-control cohorts to estimate the SNP correlation between the disorders. We test a genotype X environment (GxE) hypothesis for SZ with environment defined as winter- vs summer-born. We estimate a small but significant negative SNP-genetic correlation between SZ and RA (-0.046, s.e. 0.026, P = 0.036). The negative correlation was stronger for the SNP set attributed to coding or regulatory regions (-0.174, s.e. 0.071, P = 0.0075). Our analyses led us to hypothesize a gene-environment interaction for SZ in the form of immune challenge. We used month of birth as a proxy for environmental immune challenge and estimated the genetic correlation between winter-born and non-winter born SZ to be significantly less than 1 for coding/regulatory region SNPs (0.56, s.e. 0.14, P = 0.00090). Our results are consistent with epidemiological observations of a negative relationship between SZ and RA reflecting, at least in part, genetic factors. Results of the month of birth analysis are consistent with pleiotropic effects of genetic variants dependent on environmental context. © The Author 2015; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association.
    Full-text · Article · Aug 2015 · International Journal of Epidemiology

Publication Stats

41k Citations
4,387.28 Total Impact Points

Institutions

  • 1999-2016
    • Cardiff University
      • • MRC Centre for Neuropsychiatric Genetics & Genomics
      • • Department of Psychological Medicine and Neurology
      Cardiff, Wales, United Kingdom
    • University of Bristol
      Bristol, England, United Kingdom
    • Hannover Medical School
      • Centre for Anatomy
      Hanover, Lower Saxony, Germany
    • King's College London
      • Department of Psychological Medicine
      London, ENG, United Kingdom
  • 1994-2015
    • University of South Wales
      Понтиприте, Wales, United Kingdom
    • University of New Haven
      New Haven, Connecticut, United States
  • 2013
    • Universität Trier
      • Institute of Psychobiology
      Trier, Rheinland-Pfalz, Germany
    • Radboud University Nijmegen
      • Donders Institute for Brain, Cognition, and Behaviour
      Nymegen, Gelderland, Netherlands
  • 2012
    • University of St Andrews
      • School of Medicine
      Saint Andrews, Scotland, United Kingdom
  • 2006-2011
    • University of Toronto
      • Department of Psychiatry
      Toronto, Ontario, Canada
  • 2010
    • Wellcome Trust Sanger Institute
      Cambridge, England, United Kingdom
  • 2009
    • Mrc Harwell
      Oxford, England, United Kingdom
  • 1993-2009
    • Imperial College London
      Londinium, England, United Kingdom
  • 1991-2008
    • University of Wales
      • College of Medicine
      Cardiff, Wales, United Kingdom
  • 2005-2006
    • University of Birmingham
      Birmingham, England, United Kingdom
  • 2004
    • Tokai University
      Hiratuka, Kanagawa, Japan
  • 1999-2004
    • Washington University in St. Louis
      • Department of Psychiatry
      San Luis, Missouri, United States
  • 2003
    • University of Gothenburg
      • Unit of Social Medicine
      Goeteborg, Västra Götaland, Sweden
    • The University of Manchester
      Manchester, England, United Kingdom
  • 1993-2003
    • Yale University
      New Haven, Connecticut, United States
  • 2001
    • University of Auckland
      • Department of Molecular Medicine and Pathology
      Auckland, Auckland, New Zealand
  • 1995-1996
    • Case Western Reserve University
      • Division of Psychology
      Cleveland, OH, United States
  • 1992
    • Cancer Research UK
      Londinium, England, United Kingdom
  • 1988
    • London Research Institute
      Londinium, England, United Kingdom
  • 1985-1987
    • University College London
      • Molecular Immunology unit
      Londinium, England, United Kingdom