M Malatrasi

University of California, Riverside, Riverside, California, United States

Are you M Malatrasi?

Claim your profile

Publications (5)20.28 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low temperature and drought have major influences on plant growth and productivity. To identify barley genes involved in responses to these stresses and to specifically test the hypothesis that the dehydrin (Dhn) multigene family can serve as an indicator of the entire transcriptome response, we investigated the response of barley cv. Morex to: (1) gradual drought over 21 days and (2) low temperature including chilling, freeze-thaw cycles, and deacclimation over 33 days. We found 4,153 genes that responded to at least one component of these two stress regimes, about one fourth of all genes called "present" under any condition. About 44% (1,822 of 4,153) responded specifically to drought, whereas only 3.8% (158 of 4,153) were chilling specific and 2.8% (119 of 4,153) freeze-thaw specific, with 34.1% responsive to freeze-thaw and drought. The intersection between chilling and drought (31.9%) was somewhat smaller than the intersection between freeze-thaw and drought, implying an element of osmotic stress response to freeze-thaw. About 82.4% of the responsive genes were similar to Arabidopsis genes. The expression of 13 barley Dhn genes mirrored the global clustering of all transcripts, with specific combinations of Dhn genes providing an excellent indicator of each stress response. Data from these studies provide a robust reference data set for abiotic stress.
    Full-text · Article · Jun 2008 · Functional and Integrative Genomics
  • Source
    M Malatrasi · M Corradi · J T Svensson · T J Close · M Gulli · N Marmiroli
    [Show abstract] [Hide abstract]
    ABSTRACT: Differential display was used to isolate cDNA clones showing differential expression in response to ABA, drought and cold in barley seedling shoots. One drought-regulated cDNA clone (DD12) was further analyzed and found to encode a branched-chain amino acid aminotransferase (HvBCAT-1). A genomic clone was isolated by probing the Morex BAC library with the cDNA clone DD12 and the structure of Hvbcat-1 was elucidated. The coding region is interrupted by six introns and contains a predicted mitochondrial transit peptide. Hvbcat1 was mapped to chromosome 4H. A comparison was made to rice and Arabidopsis genes to identify conserved structural patterns. Complementation of a yeast (Saccharomyces cerevisiae) double knockout strain revealed that HvBCAT-1 can function as the mitochondrial (catabolic) BCATs in vivo. Transcript levels of Hvbcat-1, increased in response to drought stress. As the first enzyme in the branched-chain amino acid (BCAA) catabolic pathway, HvBCAT-1 might have a role in the degradation of BCAA. Degradation of BCAA could serve as a detoxification mechanism that maintains the pool of free branched-chain amino acids at low and non toxic levels, under drought stress conditions.
    Full-text · Article · Nov 2006 · Theoretical and Applied Genetics
  • Source
    E M Rodríguez · J T Svensson · M Malatrasi · D-W Choi · T J Close
    [Show abstract] [Hide abstract]
    ABSTRACT: Dehydrins (DHNs) compose a family of intrinsically unstructured proteins that have high water solubility and accumulate during late seed development, low temperature or water deficit conditions, and are thought to play a protective role in freezing and drought tolerance in plants. Twelve Dhn genes were previously described in the barley genome. Here, we report an additional member of this multigene family, Dhn13. The Dhn13 gene is located in chromosome 4 near marker MWG634 and encodes a 107-amino acid KS-type DHN. Semi-quantitative reverse transcriptase PCR data indicated that Dhn13 is constitutively expressed in seedling tissues and embryos of developing seeds. Microarray data were consistent with these results and showed a considerable increase of Dhn13 transcripts when plants were subjected to chilling and freezing temperatures. The highest transcript levels where observed in anthers. The presence of ABRE, MYC, DRE, and POLLEN1LELAT52 regulatory elements in the putative Dhn13 promoter region is in agreement with expression data.
    Full-text · Article · Apr 2005 · Theoretical and Applied Genetics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A total of 37 original cDNA libraries and 9 derivative libraries enriched for rare sequences were produced from Chinese Spring wheat (Triticum aestivum L.), five other hexaploid wheat genotypes (Cheyenne, Brevor, TAM W101, BH1146, Butte 86), tetraploid durum wheat (T. turgidum L.), diploid wheat (T. monococcum L.), and two other diploid members of the grass tribe Triticeae (Aegilops speltoides Tausch and Secale cereale L.). The emphasis in the choice of plant materials for library construction was reproductive development subjected to environmental factors that ultimately affect grain quality and yield, but roots and other tissues were also included. Partial cDNA expressed sequence tags (ESTs) were examined by various measures to assess the quality of these libraries. All ESTs were processed to remove cloning system sequences and contaminants and then assembled using CAP3. Following these processing steps, this assembly yielded 101,107 sequences derived from 89,043 clones, which defined 16,740 contigs and 33,213 singletons, a total of 49,953 "unigenes." Analysis of the distribution of these unigenes among the libraries led to the conclusion that the enrichment methods were effective in reducing the most abundant unigenes and to the observation that the most diverse libraries were from tissues exposed to environmental stresses including heat, drought, salinity, or low temperature.
    Full-text · Article · Oct 2004 · Genetics
  • Marina Malatrasi · Timothy J Close · Nelson Marmiroli
    [Show abstract] [Hide abstract]
    ABSTRACT: Plants respond to environmental stress with a number of physiological and developmental changes. Water deficit is one of the major factors limiting plant growth and development and crop productivity. One response of plants to water deficit is accumulation of abscisic acid (ABA). An increase of ABA is responsible for the induction of many genes, presumably some of which contribute to drought tolerance. Analysis of gene expression in barley seedling shoots by differential display reverse transcriptase polymerase chain reaction (DDRT-PCR) led to the isolation of several drought-, cold- and ABA-induced partial cDNA fragments. Here we extensively characterize one of these cDNAs, designated DD6. First, a larger cDNA was extended from DD6 by 5'-RACE (rapid amplification of cDNA ends). Subsequently, the corresponding gene was isolated by screening a barley BAC library, and the sequences of the transcribed and flanking regions were determined. The deduced amino acid sequence has similarity to an Arabidopsis hypothetical protein and to a human and mouse DNA-binding protein. The corresponding gene, named Srg6 (stress-responsive gene), was mapped in a barley doubled haploid mapping population to chromosome 7H between markers ABC455 and salfp76, within a region that previously has been linked to osmotic adaptation in barley and other grass genomes.
    No preview · Article · Oct 2002 · Plant Molecular Biology

Publication Stats

196 Citations
20.28 Total Impact Points


  • 2004-2008
    • University of California, Riverside
      • Department of Botany and Plant Sciences
      Riverside, California, United States
  • 2002-2006
    • Università degli studi di Parma
      Parma, Emilia-Romagna, Italy