Jürgen A Ripperger

Université de Fribourg, Freiburg, Fribourg, Switzerland

Are you Jürgen A Ripperger?

Claim your profile

Publications (48)403.28 Total impact

  • Source

    Full-text · Article · Feb 2016 · Nature Communications
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The drive to eat is regulated by two compensatory brain pathways termed as homeostatic and hedonic. Hypothalamic orexinergic (ORX) neurons regulate metabolism, feeding and reward, thus controlling physiological and hedonic appetite. Circadian regulation of feeding, metabolism and rhythmic activity of ORX cells are driven by the brain suprachiasmatic clock. How the circadian clock impacts on ORX signalling and feeding-reward rhythms is, however, unknown. Here we used mice lacking the nuclear receptor REV-ERBα, a transcription repressor and a key component of the molecular clockwork, to study food-reward behaviour. Rev-Erbα mutant mice showed highly motivated behaviours to obtain palatable food, an increase in the intake and preference for tasty diets, and in the expression of the ORX protein in the hypothalamus. Palatable food intake was inhibited in animals treated with the ORX1R antagonist. Analyzing the Orx promoter, we found Retinoic acid-related Orphan receptor Response Element binding sites for Rev-Erbα. Furthermore, Rev-Erbα dampened the activation of Orx in vitro and in vivo. Our data provide evidence for a possible repressive role of Rev-Erbα in the regulation of ORX signalling, highlighting an implication of the circadian clockwork in modulating food-reward behaviours with an important impact for the central regulation of overeating.
    Full-text · Article · Dec 2015 · Addiction Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Study objectives: The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. Methods: EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. Results: Although baseline sleep/ wake duration was remarkably similar, KO mice showed an advance of the sleep/ wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1-4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. Conclusions: Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context.
    Full-text · Article · Nov 2015 · Sleep
  • Source
    Dataset: Table S1

    Full-text · Dataset · Sep 2015
  • Source
    Dataset: FigS1

    Full-text · Dataset · Sep 2015
  • Source
    Dataset: FigS2

    Full-text · Dataset · Sep 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Genomic studies suggest an association of circadian clock genes with bipolar disorder (BD) and lithium response in humans. Therefore, we tested mice mutant in various clock genes before and after lithium treatment in the forced swim test (FST), a rodent behavioral test used for evaluation of depressive-like states. We find that expression of circadian clock components, including Per2, Cry1 and Rev-erbα, is affected by lithium treatment, and thus, these clock components may contribute to the beneficial effects of lithium therapy. In particular, we observed that Cry1 is important at specific times of the day to transmit lithium-mediated effects. Interestingly, the pathways involving Per2 and Cry1, which regulate the behavior in the FST and the response to lithium, are distinct as evidenced by the phosphorylation of GSK3β after lithium treatment and the modulation of dopamine levels in the striatum. Furthermore, we observed the co-existence of depressive and mania-like symptoms in Cry1 knock-out mice, which resembles the so-called mixed state seen in BD patients. Taken together our results strengthen the concept that a defective circadian timing system may impact directly or indirectly on mood-related behaviors.
    Full-text · Article · Aug 2015 · Chronobiology International
  • Ka Yi Hui · Jürgen A Ripperger
    [Show abstract] [Hide abstract]
    ABSTRACT: How do molecular interactions determine the period length of a circadian oscillator? In mammals, a disordered region of the BMAL1 transcription factor that is able to interact with activators or repressors seems to perform this function.
    No preview · Article · Jun 2015 · Nature Structural & Molecular Biology
  • Source
    Sara S. Fonseca Costa · Jürgen A Ripperger
    [Show abstract] [Hide abstract]
    ABSTRACT: The increase of life expectancy and the decline of biological functions with advancing age are impending obstacles for our society. In general, age-related changes can be separated into two processes. Primary aging is based on programs governing gradual changes which are generally not harmful. On the other hand, secondary aging or senescence is more aleatory in nature and it is at this stage that the progressive impairment of metabolic, physiological, and neurological functions increases the risk of death. Exploiting genetic animal models, we obtain more and more information on the underlying regulatory networks. The aim of this review is to identify potential links between the output of the circadian oscillator and secondary aging. The reasons to suspect such links rely on the fact that the mouse models without functional circadian clocks sometimes exhibit reduced life expectancy. This may be due to their inability to properly control and synchronize energy expenditure, affecting, for example, the integrity of neurons in the brain. Hence, it is tempting to speculate that re-synchronization of metabolic and physiological functions by the circadian clock may slow down the aging process.
    Full-text · Article · Mar 2015 · Frontiers in Neurology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Within the suprachiasmatic nucleus (SCN) of the hypothalamus, circadian timekeeping and resetting have been shown to be largely dependent on both membrane depolarization and intracellular second-messenger signaling. In both of these processes, voltage-gated calcium channels (VGCCs) mediate voltage-dependent calcium influx, which propagates neural impulses by stimulating vesicle fusion and instigates intracellular pathways resulting in clock gene expression. Through the cumulative actions of these processes, the phase of the internal clock is modified to match the light cycle of the external environment. To parse out the distinct roles of the L-type VGCCs, we analyzed mice deficient in Cav1.2 (Cacna1c) in brain tissue. We found that mice deficient in the Cav1.2 channel exhibited a significant reduction in their ability to phase-advance circadian behavior when subjected to a light pulse in the late night. Furthermore, the study revealed that the expression of Cav1.2 mRNA was rhythmic (peaking during the late night) and was regulated by the circadian clock component REV-ERBα. Finally, the induction of clock genes in both the early and late subjective night was affected by the loss of Cav1.2, with reductions in Per2 and Per1 in the early and late night, respectively. In sum, these results reveal a role of the L-type VGCC Cav1.2 in mediating both clock gene expression and phase advances in response to a light pulse in the late night.
    Full-text · Article · Aug 2014 · Journal of Biological Rhythms
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The function of the nuclear receptor Rev-erbα (Nr1d1) in the brain is, apart from its role in the circadian clock mechanism, unknown. Therefore, we compared gene expression profiles in the brain between wild-type and Rev-erbα knock-out (KO) animals. We identified fatty acid binding protein 7 (Fabp7, Blbp) as a direct target of repression by REV-ERBα. Loss of Rev-erbα manifested in memory and mood related behavioral phenotypes and led to overexpression of Fabp7 in various brain areas including the subgranular zone (SGZ) of the hippocampus, where neuronal progenitor cells (NPCs) can initiate adult neurogenesis. We found increased proliferation of hippocampal neurons and loss of its diurnal pattern in Rev-erbα KO mice. In vitro, proliferation and migration of glioblastoma cells were affected by manipulating either Fabp7 expression or REV-ERBα activity. These results suggest an important role of Rev-erbα and Fabp7 in adult neurogenesis, which may open new avenues for treatment of gliomas as well as neurological diseases such as depression and Alzheimer.
    Full-text · Article · Jun 2014 · PLoS ONE
  • Source

    Full-text · Dataset · Oct 2013
  • Source
    Dataset: JanichSuppl

    Full-text · Dataset · Oct 2013
  • Source

    Full-text · Dataset · Oct 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The interplay between hepatic glycogen metabolism and blood glucose levels is a paradigm of the rhythmic nature of metabolic homeostasis. Here we show that mice lacking a functional PER2 protein (Per2 (Brdm1) ) display reduced fasting glycemia, altered rhythms of hepatic glycogen accumulation, and altered rhythms of food intake. Per2 (Brdm1) mice show reduced hepatic glycogen content and altered circadian expression during controlled fasting and refeeding. Livers from Per2 (Brdm1) mice display reduced glycogen synthase protein levels during refeeding, and increased glycogen phosphorylase activity during fasting. The latter is explained by PER2 action on the expression of the adapter proteins PTG and GL, which target the protein phosphatase-1 to glycogen to decrease glycogen phosphorylase activity. Finally, PER2 interacts with genomic regions of Gys2, PTG, and G L . These results indicate an important role for PER2 in the hepatic transcriptional response to feeding and acute fasting that promotes glucose storage to liver glycogen.
    Full-text · Article · Aug 2013 · Molecular Metabolism
  • Source
    Sylvie Chappuis · Jürgen Alexander Ripperger · Anna Schnell · Gianpaolo Rando · Corinne Jud · Walter Wahli · Urs Albrecht
    [Show abstract] [Hide abstract]
    ABSTRACT: Adaptive thermogenesis allows mammals to resist to cold. For instance, in brown adipose tissue (BAT) the facultative uncoupling of the proton gradient from ATP synthesis in mitochondria is used to generate systemic heat. However, this system necessitates an increase of the Uncoupling protein 1 (Ucp1) and its activation by free fatty acids. Here we show that mice without functional Period2 (Per2) were cold sensitive because their adaptive thermogenesis system was less efficient. Upon cold-exposure, Heat shock factor 1 (HSF1) induced Per2 in the BAT. Subsequently, PER2 as a co-activator of PPARα increased expression of Ucp1. PER2 also increased Fatty acid binding protein 3 (Fabp3), a protein important to transport free fatty acids from the plasma to mitochondria to activate UCP1. Hence, in BAT PER2 is important for the coordination of the molecular response of mice exposed to cold by synchronizing UCP1 expression and its activation.
    Full-text · Article · Aug 2013 · Molecular Metabolism
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian circadian clocks restrict cell proliferation to defined time windows, but the mechanism and consequences of this interrelationship are not fully understood. Previously we identified the multifunctional nuclear protein NONO as a partner of circadian PERIOD (PER) proteins. Here we show that it also conveys circadian gating to the cell cycle, a connection surprisingly important for wound healing in mice. Specifically, although fibroblasts from NONO-deficient mice showed approximately normal circadian cycles, they displayed elevated cell doubling and lower cellular senescence. At a molecular level, NONO bound to the p16-Ink4A cell cycle checkpoint gene and potentiated its circadian activation in a PER protein-dependent fashion. Loss of either NONO or PER abolished this activation and circadian expression of p16-Ink4A and eliminated circadian cell cycle gating. In vivo, lack of NONO resulted in defective wound repair. Because wound healing defects were also seen in multiple circadian clock-deficient mouse lines, our results therefore suggest that coupling of the cell cycle to the circadian clock via NONO may be useful to segregate in temporal fashion cell proliferation from tissue organization.
    Full-text · Article · Dec 2012 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Factors interacting with core circadian clock components are essential to achieve transcriptional feedback necessary for metazoan clocks. Here, we show that all three members of the Drosophila behavior human splicing (DBHS) family of RNA-binding proteins play a role in the mammalian circadian oscillator, abrogating or altering clock function when overexpressed or depleted in cells. Although these proteins are members of so-called nuclear paraspeckles, depletion of paraspeckles themselves via silencing of the structural noncoding RNA (ncRNA) Neat1 did not affect overall clock function, suggesting that paraspeckles are not required for DBHS-mediated circadian effects. Instead, we show that the proteins bound to circadian promoter DNA in a fashion that required the PERIOD (PER) proteins and potently repressed E-box-mediated transcription but not cytomegalovirus (CMV) promoter-mediated transcription when they were exogenously recruited. Nevertheless, mice with one or both copies of these genes deleted show only small changes in period length or clock gene expression in vivo. Data from transient transfections show that each of these proteins can either repress or activate, depending on the context. Taken together, our data suggest that all of the DBHS family members serve overlapping or redundant roles as transcriptional cofactors at circadian clock-regulated genes.
    Full-text · Article · Sep 2012 · Molecular and Cellular Biology
  • Source
    Jürgen A Ripperger · Urs Albrecht
    [Show abstract] [Hide abstract]
    ABSTRACT: The circadian clock is based on a molecular oscillator, which simulates the external day within nearly all of a body's cells. This "internalized" day then defines activity and rest phases for the cells and the organism by generating precise rhythms in the metabolism, physiology, and behavior. In its perfect state, this timing system allows for the synchronization of an organism to its environment and this may optimize energy handling and responses to daily recurring challenges. However, nowadays, we believe that desynchronization of an organism due to its lifestyle or problems with its circadian clock not only causes discomfort but also may aggravate conditions such as depression, metabolic syndrome, addiction, or cancer. In this review, we focus on one simple cogwheel of the mammalian circadian clock, the PERIOD2 (PER2) protein. Originally identified as an integral part of the molecular mechanism that yields overt rhythms of about 24h, more recently multiple other functions have been identified. In essence, the PER proteins, in addition to their important function within the molecular oscillator, can be seen not only as integrators on the input side of the circadian clock but also as mediators of clock output. This diversity in their function is possible, because the PER proteins can interact with a multitude of other proteins transferring oscillator timing information to the latter. In this fashion, the circadian clock synchronizes many rhythmic processes.
    Full-text · Article · Aug 2012 · Progress in brain research
  • Source
    Jürgen A Ripperger · Urs Albrecht
    [Show abstract] [Hide abstract]
    ABSTRACT: A hallmark of the mammalian circadian timing system is synchronization of physiology and behavior, but when this synchronization is disturbed, chronic diseases such as metabolic syndrome and depression may develop. Three new studies show that nuclear receptors of the Rev-Erb family impact the circadian oscillator and its metabolic output and this can be modified with specific agonists. Hence, resynchronization of metabolic pathways by manipulation of the circadian oscillator using REV-ERB-specific agonists may represent a feasible therapeutic concept to target diseases rooted in a misaligned circadian system.
    Full-text · Article · May 2012 · Cell Research

Publication Stats

3k Citations
403.28 Total Impact Points

Institutions

  • 1970-2015
    • Université de Fribourg
      • • Unit of Biochemistry
      • • Department Biology
      • • Department of Medicine
      Freiburg, Fribourg, Switzerland
  • 2001-2006
    • University of Geneva
      • Department of Molecular Biology
      Genève, Geneva, Switzerland