J Meers

University of Queensland, Brisbane, Queensland, Australia

Are you J Meers?

Claim your profile

Publications (147)

  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Hendra virus (HeV) is an important emergent virus in Australia known to infect horses and humans in certain regions of the east coast. Whilst pteropid bats (“flying foxes”) are considered the natural reservoir of HeV, which of the four mainland species is the principal reservoir has been a source of ongoing debate, particularly as shared roosting is common. To help resolve this, we sampled a colony consisting of just one of these species, the grey-headed flying fox, (Pteropus poliocephalus), at the southernmost extent of its range. Using the pooled urine sampling technique at approximately weekly intervals over a two year period, we determined the prevalence of HeV and related paramyxoviruses using a novel multiplex (Luminex) platform. Whilst all the pooled urine samples were negative for HeV nucleic acid, we successfully identified four other paramyxoviruses, including Cedar virus; a henipavirus closely related to HeV. Collection of serum from individually caught bats from the colony showed that antibodies to HeV, as estimated by a serological Luminex assay, were present in between 14.6% and 44.5% of animals. The wide range of the estimate reflects uncertainties in interpreting intermediate results. Interpreting the study in the context of HeV studies from states to the north, we add support for an arising consensus that it is the black flying fox and not the grey-headed flying fox that is the principal source of HeV in spillover events to horses.
    Full-text Article · Jun 2016 · PLoS ONE
  • C S Smith · C E de Jong · J Meers · [...] · H E Field
    [Show abstract] [Hide abstract] ABSTRACT: Following the SARS outbreak, extensive surveillance was undertaken globally to detect and identify coronavirus diversity in bats. This study sought to identify the diversity and prevalence of coronaviruses in bats in the Australasian region. We identified four different genotypes of coronavirus, three of which (an alphacoronavirus and two betacoronaviruses) are potentially new species, having less than 90% nucleotide sequence identity with the most closely related described viruses. We did not detect any SARS-like betacoronaviruses, despite targeting rhinolophid bats, the putative natural host taxa. Our findings support the virus-host co-evolution hypothesis, with the detection of Miniopterus bat coronavirus HKU8 (previously reported in Miniopterus species in China, Hong Kong and Bulgaria) in Australian Miniopterus species. Similarly, we detected a novel betacoronavirus genotype from Pteropus alecto which is most closely related to Bat coronavirus HKU9 identified in other pteropodid bats in China, Kenya and the Philippines. We also detected possible cross-species transmission of bat coronaviruses, and the apparent enteric tropism of these viruses. Thus, our findings are consistent with a scenario wherein the current diversity and host specificity of coronaviruses reflects co-evolution with the occasional host shift.
    Article · Apr 2016 · EcoHealth
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Bats of the genus Pteropus (Pteropodidae) are recognised as the natural host of multiple emerging pathogenic viruses of animal and human health significance, including henipaviruses, lyssaviruses and ebolaviruses. Some studies have suggested that physiological and ecological factors may be associated with Hendra virus infection in flying-foxes in Australia; however, it is essential to understand the normal range and seasonal variability of physiological biomarkers before seeking physiological associations with infection status. We aimed to measure a suite of physiological biomarkers in P. alecto over time to identify any seasonal fluctuations and to examine possible associations with life-cycle and environmental stressors. We sampled 839 adult P. alecto in the Australian state of Queensland over a 12-month period. The adjusted population means of every assessed hematologic and biochemical parameter were within the reported reference range on every sampling occasion. However, within this range, we identified significant temporal variation in these parameters, in urinary parameters and body condition, which primarily reflected the normal annual life cycle. We found no evident effect of remarkable physiological demands or nutritional stress, and no indication of clinical disease driving any parameter values outside the normal species reference range. Our findings identify underlying temporal physiological changes at the population level that inform epidemiological studies and assessment of putative physiological risk factors driving Hendra virus infection in P. alecto. More broadly, the findings add to the knowledge of Pteropus populations in terms of their relative resistance and resilience to emerging infectious disease.
    Full-text Article · Mar 2016 · EcoHealth
  • Source
    Joerg Henning · Dirk U. Pfeiffer · Mark Stevenson · [...] · Joanne Meers
    [Show abstract] [Hide abstract] ABSTRACT: Duck populations are considered to be a reservoir of Highly pathogenic avian influenza (HPAI) virus H5N1 in some agricultural production systems, as they are able to shed the virus for several days without clinical signs. Countries endemically affected with HPAI in Asia are characterised by production systems where ducks are fed on post-harvest spilled rice. During this scavenging process it is common for ducks to come into contact with other duck flocks or wild birds, thereby providing opportunities for virus spread. Effective risk management for HPAI has been significantly compromised by a limited understanding of management of moving duck flocks in these countries, despite of a small number of recent investigations. Here, for the first time, we described the management of moving duck flocks and the structure of the moving duck flock network in quantitative terms so that factors influencing the risk of HPAIV transmission can be identified. By following moving duck flock farmers over a period of 6 months in Java, Indonesia, we were able to describe the movement of flocks and to characterise the network of various types of actors associated with the production system. We used these data to estimate the basic reproductive number for HPAI virus spread. Our results suggest that focussing HPAI prevention measures on duck flocks alone will not be sufficient. Instead, the role of transporters of moving duck flocks, hatcheries and rice paddy owners, in the spread of the HPAI virus needs to be recognised.
    Full-text Article · Mar 2016 · PLoS ONE
  • Nishat Sarker · Helen Owen · Greg Simmons · [...] · Joanne Meers
    [Show abstract] [Hide abstract] ABSTRACT: There is a long-standing and increasing need to understand the immune system of the koala (Phascolarctos cinereus), an iconic marsupial species that is facing many threats to its survival. Koala retrovirus (KoRV) is thought to be a contributor to this ongoing decline. KoRV infection occurs with 100% prevalence in Queensland (QLD) but has a lower prevalence in South Australia (SA) and KoRV infection is associated with neoplastic and immunosuppressive diseases in koalas. There is anecdotal evidence that the picture of population disease associated with KoRV infection differs between these two geographic areas, however the source and relevance of these differences are unknown. The aim of this project is to characterise and to explore possible reasons for these differences, whether they are host or viral factors. We are investigating host factors as contributors to disease pathogenesis by performing studies comparing the immune response in QLD KoRV infected animals with that in SA KoRV infected and also uninfected animals. We plan to further investigate host immune response to infection by sequencing the transcriptome analysis of submandibular lymph nodes from KoRV positive and negative animals. Bioinformatics techniques will be used to identify any differences in the expression of genes associated with the innate and adaptive immune response between the koala populations. It is anticipated that this information will identify factors that influence development of KoRV associated disease, information that can hopefully be used to design koala management programs and disease prevention measures.
    Conference Paper · Nov 2015
  • Harimurti Nuradji · John Bingham · Sue Lowther · [...] · Joanne Meers
    [Show abstract] [Hide abstract] ABSTRACT: Oropharyngeal and cloacal swabs have been widely used for the detection of H5N1 highly pathogenic avian Influenza A virus (HPAI virus) in birds. Previous studies have shown that the feather calamus is a site of H5N1 virus replication and therefore has potential for diagnosis of avian influenza. However, studies characterizing the value of feathers for this purpose are not available, to our knowledge; herein we present a study investigating feathers for detection of H5N1 virus. Ducks and chickens were experimentally infected with H5N1 HPAI virus belonging to 1 of 3 clades (Indonesian clades 2.1.1 and 2.1.3, Vietnamese clade 1). Different types of feathers and oropharyngeal and cloacal swab samples were compared by virus isolation. In chickens, virus was detected from all sample types: oral and cloacal swabs, and immature pectorosternal, flight, and tail feathers. During clinical disease, the viral titers were higher in feathers than swabs. In ducks, the proportion of virus-positive samples was variable depending on viral strain and time from challenge; cloacal swabs and mature pectorosternal feathers were clearly inferior to oral swabs and immature pectorosternal, tail, and flight feathers. In ducks infected with Indonesian strains, in which most birds did not develop clinical signs, all sampling methods gave intermittent positive results; 3–23% of immature pectorosternal feathers were positive during the acute infection period; oropharyngeal swabs had slightly higher positivity during early infection, while feathers performed better during late infection. Our results indicate that immature feathers are an alternative sample for the diagnosis of HPAI in chickens and ducks.
    Article · Oct 2015 · Journal of veterinary diagnostic investigation: official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc
  • [Show abstract] [Hide abstract] ABSTRACT: Highly pathogenic avian influenza (HPAI) causes significant economic loss, reduced food security and poses an ongoing pandemic threat. Poultry vaccination significantly decreases these problems and recognizes that the health of humans, animals and ecosystems are connected. Low-cost manufacture of poultry vaccine matched quickly to the ever-changing circulating strain is needed for effective vaccination. Here, we re-engineered the process to manufacture bacterially synthesized modular capsomere comprising influenza M2e, previously shown to confer complete protection in challenged mice, for application in poultry. Modular capsomere was prepared using a simplified non-chromatographic salting-out precipitation method and its immunogenicity tested in vivo in poultry. Modular capsomere crudely purified by precipitation (pCapM2e) contained more contaminants than equivalent product purified by chromatography (cCapM2e). Unadjuvanted pCapM2e containing 80EU of endotoxin per dose was inferior to highly purified and adjuvanted cCapM2e (2EU per dose). However, addition of adjuvant to pCapM2e resulting in high immunogenicity after only a single dose of vaccination, yet without any local adverse reaction. This finding suggests a strong synergy between adjuvant, antigen and contaminants, and the possible existence of a "Goldilocks" level of contaminants, where high immunogenicity and low reactogenicity can be obtained in a single-shot vaccination. The simplified process offers potential cost and speed advantages to address the needs in influenza poultry vaccination in low-cost veterinary markets.
    Article · Sep 2015 · Vaccine
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Meleagrid herpesvirus 1 (MeHV-1) infectious bacterial artificial chromosomes (iBACs) are ideal vectors for the development of recombinant vaccines for the poultry industry. However, the full potential of iBACS as vectors can only be realised after thorough genetic characterisation, including identification of those genetic locations that are non-essential for virus replication. Generally, transposition has proven to be a highly effective strategy for rapid and efficient mutagenesis of iBAC clones. The current study describes the characterisation of 34 MeHV-1 mutants containing transposon insertions within the pMeHV1-C18 iBAC genome. Tn5 and MuA transposition methods were used to generate a library of 76 MeHV-1 insertion mutants. The capacity of each mutant to facilitate the recovery of infectious MeHV-1 was determined by the transfection of clone DNA into chicken embryo fibroblasts. Attempts to recover infectious virus from the modified clones identified 14 genetic locations that were essential for MeHV-1 replication in cell culture. Infectious MeHV-1 was recovered from the remaining 14 intragenic insertion mutants and six intergenic insertion mutants, suggesting that the respective insertion locations are non-essential for MeHV-1 replication in cell culture. The essential and non-essential designations for those MeHV-1 genes characterised in this study were generally in agreement with previous reports for other herpesviruses homologues. However, the requirement for the mardivirus-specific genes LORF4A and LORF5 are reported for the first time. These findings will help direct future work on the development of recombinant poultry vaccines using MeHV-1 as a vector by identifying potential transgene insertion sites within the viral genome.
    Full-text Article · Aug 2015 · Virology Journal
  • Nishat Sarker · Helen Owen · Greg Simmons · [...] · Joanne Meers
    [Show abstract] [Hide abstract] ABSTRACT: Retroviral particles were first identified in tissues from a leukaemic koala in 1988. The virus was successfully isolated from Queensland (QLD) koalas and the full genome was sequenced in 2000. Koala retrovirus (KoRV) is the only known exogenous retrovirus undergoing a process of active endogenisation in its host at the present time. KoRV is 100% prevalent within QLD koalas and the virus has endogenised in that population, with high proviral (DNA) loads reported. These populations also have high levels of chlamydiosis (40%) and neoplasia. The scenario is different in South Australia (SA) where KoRV-free animals are present, and apparently both endogenous and exogenous forms of the virus exist. There is anecdotal evidence that the picture of population disease associated with KoRV infection differs between these two geographic areas however the source and relevance of these differences is unknown. The aim of this project is to characterise these differences and to explore possible reasons, whether they are host or viral factors. Viruses from both areas will be characterised, proviral and viral (RNA) load will be quantified and compared to pathology and the host response to infection will be characterised using transcriptome analysis. It is hypothesised that high viral load is associated with disease advancement because, as the viral load becomes high, the chance of insertional mutagenesis and subsequent tumour induction increases. Virus will be cultured to investigate any sequence variation between virus isolates from SA and QLD koalas. Transcriptome analysis will identify differences in expression of genes associated with the immune response between QLD and SA populations and between KoRV-infected and uninfected koalas. The transcriptome study may also provide information about characteristics of KoRV in the koala genome. It is anticipated that this information will identify factors that influence development of KoRV associated disease, information that can hopefully be used to design koala management programs and disease prevention measures.
    Conference Paper · Jul 2015
  • [Show abstract] [Hide abstract] ABSTRACT: Meleagrid herpesvirus 1 (MeHV-1 or turkey herpesvirus) has been widely used as a vaccine in commercial poultry. Initially, these vaccine applications were for the prevention of Marek's disease resulting from Gallid herpesvirus 2 infections, while more recently MeHV-1 has been used as recombinant vector for other poultry infections. The construction of herpesvirus infectious clones that permit propagation and manipulation of the viral genome in bacterial hosts has advanced the studies of herpesviral genetics. The current study reports the construction of five MeHV-1 infectious clones. The in vitro properties of viruses recovered from these clones were indistinguishable from the parental MeHV-1. In contrast, the rescued MeHV-1 viruses were significantly attenuated when used in vivo. Complete sequencing of the infectious clones identified the absence of two regions of the MeHV-1 genome compared to the MeHV-1 reference sequence. These analyses determined the rescued viruses have seven genes, UL43, UL44, UL45, UL56, HVT071, sorf3 and US2 either partially or completely deleted. In addition, single nucleotide polymorphisms were identified in all clones compared with the MeHV-1 reference sequence. As a consequence of one of the polymorphisms identified in the UL13 gene, four of the rescued viruses were predicted to encode a serine/threonine protein kinase lacking two of three domains required for activity. Thus four of the recovered viruses have a total of eight missing or defective genes. The implications of these findings in the context of herpesvirus biology and infectious clone construction are discussed.
    Article · Jul 2015 · Virus Genes
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: This paper establishes reference ranges for hematologic and plasma biochemistry values in wild Black flying-foxes (Pteropus alecto) captured in South East Queensland, Australia. Values were found to be consistent with those of other Pteropus species. Four hundred and forty-seven animals were sampled over 12 months and significant differences were found between age, sex, reproductive and body condition cohorts in the sample population. Mean values for each cohort fell within the determined normal adult reference range, with the exception of elevated levels of alkaline phosphatase in juvenile animals. Hematologic and biochemistry parameters of injured animals showed little or no deviation from the normal reference values for minor injuries, while two animals with more severe injury or abscessation showed leucocytosis, anaemia, thrombocytosis, hyperglobulinemia and hypoalbuminemia.
    Full-text Article · May 2015 · PLoS ONE
  • Joerg Henning · Than Hla · Joanne Meers
    [Show abstract] [Hide abstract] ABSTRACT: Improvement in animal disease control and prevention is dependent on several factors including farmers' uptake of new technologies and skills, particularly in developing countries. Extension is the means by which information about these technologies and skills is delivered to farmers, in order that they can use this knowledge to improve farming practices and their quality of life. This implies a shift from traditional methods to new science-based methods of production. However, in many developing countries farmers are illiterate and unable to understand written outcomes of scientific research. This paper summarizes approaches to communicate epidemiological findings and reports on experiences obtained from a research project in Myanmar, where results from epidemiological field investigations and intervention studies were 'translated' in an understandable manner to village communities. Rural chicken farmers were the central focus of this extension work and simple and sustainable methods to improve the health and production of scavenging chicken flocks were promoted. Unique extension materials transformed scientific outputs published in international journals into clear pictographic messages comprehendible by villagers, while maintaining country-specific, traditional, religious and public perspectives. Benefits, difficulties and pitfalls in using extension methods to communicate advice on preventive veterinary medicine measures in different cross-cultural settings are discussed and guidelines on how to distribute epidemiological research results to illiterate farmers are provided.
    Article · Dec 2014 · SpringerPlus
  • Source
    Greg Simmons · Daniel Clarke · Jeff McKee · [...] · Joanne Meers
    [Show abstract] [Hide abstract] ABSTRACT: Gibbon ape leukaemia virus (GALV) and koala retrovirus (KoRV) share a remarkably close sequence identity despite the fact that they occur in distantly related mammals on different continents. It has previously been suggested that infection of their respective hosts may have occurred as a result of a species jump from another, as yet unidentified vertebrate host. To investigate possible sources of these retroviruses in the Australian context, DNA samples were obtained from 42 vertebrate species and screened using PCR in order to detect proviral sequences closely related to KoRV and GALV. Four proviral partial sequences totalling 2880 bases which share a strong similarity with KoRV and GALV were detected in DNA from a native Australian rodent, the grassland melomys, Melomys burtoni. We have designated this novel gammaretrovirus Melomys burtoni retrovirus (MbRV). The concatenated nucleotide sequence of MbRV shares 93% identity with the corresponding sequence from GALV-SEATO and 83% identity with KoRV. The geographic ranges of the grassland melomys and of the koala partially overlap. Thus a species jump by MbRV from melomys to koalas is conceivable. However the genus Melomys does not occur in mainland South East Asia and so it appears most likely that another as yet unidentified host was the source of GALV.
    Full-text Article · Sep 2014 · PLoS ONE
  • [Show abstract] [Hide abstract] ABSTRACT: Veterinarians have few tools to predict the rate of disease progression in FIV-infected cats. In contrast, in HIV infection plasma viral RNA load and acute phase protein concentrations are commonly used as predictors of disease progression. This study evaluated these predictors in cats naturally infected with FIV. In older cats (> 5 years), log10 FIV RNA load was higher in the terminal stages of disease compared to the asymptomatic stage. There was a significant association between log10 FIV RNA load and both log10 serum amyloid A concentration and age in unwell FIV-infected cats. This study suggests that viral RNA load and serum amyloid A warrant further investigation as predictors of disease status and prognosis in FIV-infected cats.
    Article · Aug 2014 · The Veterinary Journal
  • Greg Simmons · Joanne Meers · Daniel T. W. Clarke · [...] · Jeff J. McKee
    Article · May 2014
  • Joanne Meers · Greg Simmons · Kiersten Jones · [...] · Paul R. Young
    Article · May 2014
  • S E Roche · S Costard · J Meers · [...] · A C Breed
    [Show abstract] [Hide abstract] ABSTRACT: Nipah virus (NiV) is a recently emerged zoonotic virus that causes severe disease in humans. The reservoir hosts for NiV, bats of the genus Pteropus (known as flying-foxes) are found across the Asia-Pacific including Australia. While NiV has not been detected in Australia, evidence for NiV infection has been found in flying-foxes in some of Australia's closest neighbours. A qualitative risk assessment was undertaken to assess the risk of NiV establishing in Australian flying-foxes through flying-fox movements from nearby regions. Events surrounding the emergence of new diseases are typically uncertain and in this study an expert opinion workshop was used to address gaps in knowledge. Given the difficulties in combining expert opinion, five different combination methods were analysed to assess their influence on the risk outcome. Under the baseline scenario where the median was used to combine opinions, the risk was estimated to be very low. However, this risk increased when the mean and linear opinion pooling combination methods were used. This assessment highlights the effects that different methods for combining expert opinion have on final risk estimates and the caution needed when interpreting these outcomes given the high degree of uncertainty in expert opinion. This work has provided a flexible model framework for assessing the risk of NiV establishment in Australian flying-foxes through bat movements which can be updated when new data become available.
    Article · Feb 2014 · Epidemiology and Infection
  • Source
    Hendra Wibawa · John Bingham · Harimurti Nuradji · [...] · Joanne Meers
    [Show abstract] [Hide abstract] ABSTRACT: Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2-8 dpi. Viral ribonucleic acid was detected from 1-15 days post inoculation from the oral route and 1-24 days post inoculation from the cloacal route (cycle threshold <40). Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection.
    Full-text Article · Jan 2014 · PLoS ONE
  • Source
    Hendra Wibawa · John Bingham · Harimurti Nuradji · [...] · Joanne Meers
    [Show abstract] [Hide abstract] ABSTRACT: Ducks are important maintenance hosts for avian influenza, including H5N1 highly pathogenic avian influenza viruses. A previous study indicated that persistence of H5N1 viruses in ducks after the development of humoral immunity may drive viral evolution following immune selection. As H5N1 HPAI is endemic in Indonesia, this mechanism may be important in understanding H5N1 evolution in that region. To determine the capability of domestic ducks to maintain prolonged shedding of Indonesian clade 2.1 H5N1 virus, two groups of Pekin ducks were inoculated through the eyes, nostrils and oropharynx and viral shedding and transmission investigated. Inoculated ducks (n = 15), which were mostly asymptomatic, shed infectious virus from the oral route from 1 to 8 days post inoculation, and from the cloacal route from 2-8 dpi. Viral ribonucleic acid was detected from 1-15 days post inoculation from the oral route and 1-24 days post inoculation from the cloacal route (cycle threshold <40). Most ducks seroconverted in a range of serological tests by 15 days post inoculation. Virus was efficiently transmitted during acute infection (5 inoculation-infected to all 5 contact ducks). However, no evidence for transmission, as determined by seroconversion and viral shedding, was found between an inoculation-infected group (n = 10) and contact ducks (n = 9) when the two groups only had contact after 10 days post inoculation. Clinical disease was more frequent and more severe in contact-infected (2 of 5) than inoculation-infected ducks (1 of 15). We conclude that Indonesian clade 2.1 H5N1 highly pathogenic avian influenza virus does not persist in individual ducks after acute infection.
    Full-text Article · Jan 2014 · PLoS ONE
  • Robyn N Hall · Joanne Meers · Neena Mitter · [...] · Timothy J Mahony
    [Show abstract] [Hide abstract] ABSTRACT: The propagation of herpesvirus genomes as infectious bacterial artificial chromosomes (iBAC) has enabled the application of highly efficient strategies to investigate gene function across the genome. One of these strategies, transposition, has been used successfully on a number of herpesvirus iBACs to generate libraries of gene disruption mutants. Gene deletion studies aimed at determining the dispensable gene repertoire of the Meleagrid herpesvirus 1 (MeHV-1) genome to enhance the utility of this virus as a vaccine vector have been conducted in this report. A MeHV-1 iBAC was used in combination with the Tn5 and MuA transposition systems in an attempt to generate MeHV-1 gene interruption libraries. However, these studies demonstrated that Tn5 transposition events into the MeHV-1 genome occurred at unexpectedly low frequencies. Furthermore, characterization of genomic locations of the rare Tn5 transposon insertion events indicated a nonrandom distribution within the viral genome, with seven of the 24 insertions occurring within the gene encoding infected cell protein 4. Although insertion events with the MuA system occurred at higher frequency compared with the Tn5 system, fewer insertion events were generated than has previously been reported with this system. The characterization and distribution of these MeHV-1 iBAC transposed mutants is discussed at both the nucleotide and genomic level, and the properties of the MeHV-1 genome that could influence transposition frequency are discussed.
    Article · Jun 2013 · Avian Diseases

Publication Stats

1k Citations

Institutions

  • 2005-2011
    • University of Queensland
      • School of Veterinary Science
      Brisbane, Queensland, Australia
  • 2009
    • SciQuest
      North Carolina, United States
  • 2002
    • Massey University
      • Institute of Veterinary, Animal and Biomedical Sciences
      Palmerston North, Manawatu-Wanganui, New Zealand