J Florian M Müller

Goethe-Universität Frankfurt am Main, Frankfurt, Hesse, Germany

Are you J Florian M Müller?

Claim your profile

Publications (2)6.07 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Coincident hand and foot movements are more reliably performed in the same direction than in opposite directions. Using transcranial magnetic stimulation (TMS) to assess motor cortex function, we examined the physiological basis of these movements across three novel experiments. Experiment 1 demonstrated that upper limb corticomotor excitability changed in a way that facilitated isodirectional movements of the hand and foot, during phasic and isometric muscle activation conditions. Experiment 2 demonstrated that motor cortex inhibition was modified with active, but not passive, foot movement in a manner that facilitated hand movement in the direction of foot movement. Together, these findings demonstrate that the coupling between motor representations within motor cortex is activity dependent. Because there are no known connections between hand and foot areas within primary motor cortex, experiment 3 used a dual-coil paired-pulse TMS protocol to examine functional connectivity between secondary and primary motor areas during active ankle dorsiflexion and plantarflexion. Dorsal premotor cortex (PMd) and supplementary motor area (SMA) conditioning, but not ventral premotor cortex (PMv) conditioning, produced distinct phases of task-dependent modulation of excitability of forearm representations within primary motor cortex (M1). Networks involving PMd-M1 facilitate isodirectional movements of hand and foot, whereas networks involving SMA-M1 facilitate corticomotor pathways nonspecifically, which may help to stabilize posture during interlimb coordination. These results may have implications for targeted neurorehabilitation after stroke.
    Preview · Article · Aug 2007 · Journal of Neurophysiology
  • Source
    J Florian M Müller · Yuriy Orekhov · Yali Liu · Ulf Ziemann
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-term potentiation (LTP) and long-term depression (LTD) underlie most models of learning and memory, but neural activity would grow or shrink in an uncontrolled manner, if not guarded by stabilizing mechanisms. The Bienenstock-Cooper-Munro (BCM) rule proposes a sliding threshold for LTP/LTD induction: LTP induction becomes more difficult if neural activity was high previously. Here we tested if this form of homeostatic plasticity applies to the human motor cortex (M1) in vivo by examining the interactions between two consecutive sessions of paired associative stimulation (PAS). PAS consisted of repeated pairs of electrical stimulation of the right median nerve followed by transcranial magnetic stimulation of the left M1. The first PAS session employed an interstimulus interval equalling the individual N20-latency of the median nerve somatosensory-evoked cortical potential plus 2 ms, N20-latency minus 5 ms, or a random alternation between these intervals, to induce an LTP-like increase in motor-evoked potential (MEP) amplitudes in the right abductor pollicis brevis muscle (PAS(LTP)), an LTD-like decrease (PAS(LTD)), or no change (PAS(Control)), respectively. The second PAS session 30 min later was always PAS(LTP). It induced an moderate LTP-like effect if conditioned by PAS(Control), which increased if conditioned by PAS(LTD), but decreased if conditioned by PAS(LTP). Effects on MEP amplitude induced by the second PAS session exhibited a negative linear correlation with those in the first PAS session. Because the two PAS sessions activate identical neuronal circuits, we conclude that 'homosynaptic-like' homeostatic mechanisms in accord with the BCM rule contribute to regulating plasticity in human M1.
    Preview · Article · Jul 2007 · European Journal of Neuroscience