Hisae Matsui

Osaka University, Suika, Ōsaka, Japan

Are you Hisae Matsui?

Claim your profile

Publications (5)8.46 Total impact

  • Source
    [Show abstract] [Hide abstract] ABSTRACT: To assess the potential endocrine disruptive effects through multiple nuclear receptors (NRs), especially non-steroidal NRs, in municipal wastewater, we examined the agonistic activities on four NRs (estrogen receptor alpha, thyroid hormone receptor alpha, retinoic acid receptor alpha and retinoid X receptor alpha) of untreated and treated wastewater from municipal wastewater treatment plants (WWTPs) in Japan using a yeast two-hybrid assay. Investigation of the influent and effluent of seven WWTPs revealed that agonistic activities against steroidal and non-steroidal NRs were always detected in the influents and partially remained in the effluents. Further investigation of four WWTPs employing conventional activated sludge, pseudo-anoxic-oxic, anoxic-oxic and anaerobic-anoxic-oxic processes revealed that the ability to reduce the agonistic activity against each of the four NRs varies depending on the treatment process. These results indicated that municipal wastewater in Japan commonly contains endocrine disrupting chemicals that exert agonistic activities on steroidal and non-steroidal NRs, and that some of these chemicals are released into the natural aquatic environment. Although the results obtained in yeast assays suggested that measured levels of non-steroidal NR agonists in the effluent of WWTPs were not likely to cause any biological effect, further study is required to assess their possible risks in detail.
    Full-text · Article · Jan 2011 · Journal of Environmental Sciences
  • [Show abstract] [Hide abstract] ABSTRACT: Retinoic acid receptor (RAR) is a nuclear receptor involved in vertebrate morphogenesis, growth, cellular differentiation, and tissue homeostasis. Excess expression of the retinoid signaling can cause various developmental toxicities in animals and humans. We previously found that influents from sewage treatment plants (STPs) in Japan had a RAR agonistic activity and the activity cannot be removed completely by conventional biological treatments. In this study, we assessed the performance of chemical and physical sewage treatment technologies-ozonation, ultraviolet treatment, chlorination, coagulation using polyaluminium chloride (PAC) and ferric sulfate, and filtration with ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO) membranes-in removal of RAR agonistic activity of STP effluent. All water treatment experiments were conducted in laboratory-scale reactors. The RAR agonistic activity of samples was measured using a yeast two-hybrid assay. Results showed that the effectiveness of tested technologies on the removal of RAR agonistic activity can be ranked as RO or NF > chlorination > ozonation > MF > UV > coagulation with ferric sulfate>coagulation with PAC. Furthermore, the effectiveness of chlorination might rank lower because excess reaction might bring a side effect by producing some RAR agonistic by-product(s).
    No preview · Article · Jun 2009 · Water Science & Technology
  • [Show abstract] [Hide abstract] ABSTRACT: A total of 16 water samples from four rivers in Japan were examined for their agonistic activities against five human nuclear receptors (estrogen receptor [ER] alpha, thyroid hormone receptor alpha, retinoic acid receptor [RAR] alpha, retinoid X receptor alpha, and vitamin D receptor) by using a yeast two-hybrid assay. The results suggest that the river environment is contaminated with endocrine disrupting chemicals (EDCs) that can interact with a variety of nuclear receptors and that contamination with those that have RAR agonistic activity may be more serious than contamination with well-known EDCs that act as ER agonists.
    No preview · Article · Apr 2009 · Bulletin of Environmental Contamination and Toxicology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: When municipal secondary effluent is used as the main supplementation water source for surface water bodies, its potential adverse ecological effects should not be neglected. The objective of this work was to investigate the effectiveness of several technologies, i.e. combination of coagulation and sand filtration (CSF), ultraviolet (UV) irradiation, chlorination, ozonation, ultrafiltration (UF) and reverse osmosis filtration (RO), on the removal of acute ecotoxicity, genotoxicity and retinoic acid receptor (RAR) agonist activity from the municipal secondary effluent. The effects of treated effluents on the development of Japanese medaka (Oryzias latipes) embryos were also evaluated. The secondary effluent exhibited a mutagenic effect on Salmonella typhimurium strain TA 1535/pSK1002, acute invertebrate toxicity to Daphnia magna, and weak RAR alpha activity. RO and ozonation demonstrated remarkable removals of the genotoxic effect, acute toxicity and RAR activity from secondary effluent, while chlorination could elevate both genotoxicity and acute toxicity. CSF, UV, UF, chlorination as well as RO could decrease the 4-day mortality of medaka embryos and accordingly increase the hatching success rate, comparing with the secondary effluent. Ozonation at 4 mg/l and higher doses, however, elicited significantly higher 4-day mortality, leading to the reduction of the hatching success rate.
    Full-text · Article · Feb 2009 · Science of The Total Environment
  • [Show abstract] [Hide abstract] ABSTRACT: Since the 1990s, population decreases, reproductive anomalies and malformations of highly aquatic animals have been increasingly reported. One possible cause is considered to be endocrine disruptive effects induced by environmental contaminants through a direct interaction with nuclear receptors, not only with steroid hormone receptors but also with other ones. In this study, we examined the binding affinities of 20 chemicals, which are registered in the Japanese Pollutant Release and Transfer Register (PRTR) and have been abundantly discharged into aquatic environments to eight human nuclear receptors and assessed their potential endocrine disruptive effects. Of the 20 PRTR chemicals tested, nonylphenol diethoxylate, telephthalic acid (TPA), and linear dodecyl-benzensulfonate (DBS) bound to at least two receptors at high concentrations. TPA and DBS enhanced the activities of both retinoic acid receptor (RAR) γ and vitamin D receptor (VDR) in a dose-dependent manner. This suggests that TPA and DBS may disturb the vitamin D endocrine functions mediated by a VDR-VDR homodimer or a VDR-RAR heterodimer. Also, our results indicate that endocrine disruptors unsuspected under the current assessment criteria could potentially bind to various nuclear receptors and disrupt endocrine systems mediated by such receptors.
    No preview · Article · Feb 2007 · Journal of Japan Society on Water Environment