Ellinor Grinde

Albany Medical College, Albany, New York, United States

Are you Ellinor Grinde?

Claim your profile

Publications (15)50.93 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: G protein-coupled receptors (GPCR) are a prominent class of plasma membrane proteins that regulate physiological responses to a wide variety of stimuli and therapeutic agents. While GPCR oligomerization has been studied extensively in recombinant cells, it remains uncertain whether native receptors expressed in their natural cellular environment are monomers, dimers or oligomers. The goal of this study was to determine the monomer/oligomer status of a native GPCR endogenously expressed in its natural cellular environment. Native 5-HT2C receptors in choroid plexus epithelial cells were evaluated using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH). An anti-5HT2C fragment antigen binding protein was used to label native 5-HT2C receptors. A known monomeric receptor (CD-86) served as a control for decoding the oligomer status of native 5-HT2C receptors by molecular brightness analysis. FCS with PCH revealed molecular brightness values for native 5-HT2C receptors equivalent to the molecular brightness of a homodimer. 5-HT2C receptors displayed a diffusion coefficient of 5 x 10(-9) cm(2)/s and were expressed at 32 receptors/um(2) on the apical surface of choroid plexus epithelial cells. The functional significance and signaling capabilities of the homodimer were investigated in HEK293 cells using agonists that bind in a wash-resistant manner to one or both protomers of the homodimer. While agonist binding to one protomer resulted in G-protein activation, maximal stimulation required occupancy of both protomers. This study demonstrates, for the first time, the homodimeric structure of 5-HT2C receptors endogenously expressed in their native cellular environment and identifies the homodimer as a functional signaling unit. The American Society for Pharmacology and Experimental Therapeutics.
    No preview · Article · Jan 2015 · Molecular pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The issue of G-protein coupled receptor (GPCR) oligomer status has not been resolved. While many studies have provided evidence in favor of receptor-receptor interactions, there is no consensus as to the exact oligomer size of class A GPCR. Previous studies have reported monomers, dimers, tetramers and higher order oligomers. In the present study this issue was examined using fluorescence correlation spectroscopy (FCS) with photon counting histogram (PCH) analysis, a sensitive method for monitoring diffusion and oligomer size of plasma membrane proteins. Six different class A GPCR were selected from the serotonin (5-HT2A), adrenergic (α1b-AR and β2-AR), muscarinic (M1 and M2), and dopamine (D1) receptor families. Each GPCR was C-terminally labeled with GFP or YFP and expressed in HEK293 cells. FCS provided plasma membrane diffusion coefficients on the order of 7.5x10(-9) cm(2)/s. PCH molecular brightness analysis was used to determine GPCR oligomer size. Known monomeric (CD-86) and dimeric (CD-28) receptors with GFP and YFP tags were used as controls to determine the molecular brightness of monomers and dimers. PCH analysis of fluorescence-tagged GPCR revealed molecular brightness values that were twice the monomeric controls and similar to the dimeric controls. Reduced chi square analyses of the PCH data best fit a model for a homogeneous population of homodimers, without tetramers or higher order oligomers. The homodimer configuration was unaltered by agonist treatment and was stable over a 10-fold range of receptor expression level. The results of this study demonstrate that biogenic amine receptors freely diffusing within the plasma membrane are predominantly homodimers.
    Preview · Article · Aug 2013 · Molecular pharmacology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) are techniques with single molecule sensitivity that are well suited for examining the biophysical properties of protein complexes in living cells. In the present study, FCS and PCH were applied to determine the diffusion coefficient and oligomeric size of G-protein-coupled receptors. FCS was used to record fluctuations in fluorescence intensity arising from fluorescence-tagged 5-hydroxytryptamine 2C (5-HT2C) receptors diffusing within the plasma membrane of HEK293 cells and rat hippocampal neurons. Autocorrelation analysis yielded diffusion coefficients ranging from 0.8 to 1.2 μm2/s for fluorescence-tagged receptors. Because the molecular brightness of a fluorescent protein is directly proportional to the number of fluorescent proteins traveling together within a protein complex, it can be used to determine the oligomeric size of the protein complex. FCS and PCH analysis of fluorescence-tagged 5-HT2C receptors provided molecular brightness values that were twice that of GFP and YFP monomeric controls, similar to a dimeric GFP control, and unaltered by 5-HT. Bimolecular fluorescence complementation of the N- and C-terminal halves of YFP attached to 5-HT2C receptors was observed in endoplasmic reticulum/Golgi and plasma membranes with a brightness equal to monomeric YFP. When GFP-tagged 5-HT2C receptors were co-expressed with a large excess of untagged, non-fluorescent 5-HT2C receptors, the molecular brightness was reduced by half. PCH analysis of the FCS data were best described by a one-component dimer model without monomers or tetramers. Therefore, it is concluded that 5-HT2C receptors freely diffusing within the plasma membrane are dimeric.
    Preview · Article · May 2012 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Serotonin 5-HT(2C) receptors represent targets for therapeutics aimed at treating anxiety, depression, schizophrenia, and obesity. Previously, we demonstrated that 5-HT(2C) receptors function as homodimers. Herein, we investigated the effect of agonist and inverse agonist treatment on the homodimer status of two naturally occurring 5-HT(2C) receptor isoforms, one without basal activity (VGV) and one with constitutive activity (INI) with respect to Galpha(q) signaling. Cyan- and yellow-fluorescent proteins were used to monitor VGV and INI homodimer formation by western blot, and in living cells using bioluminescence and fluorescence resonance energy transfer (BRET and FRET). Western blots of solubilized membrane proteins revealed equal proportions of homodimeric receptor species from HEK293 cells transfected with either the VGV or INI isoform in the absence and presence of 5-HT. BRET ratios measured in HEK293 cells transfected with the VGV or INI isoform were the same and were not modulated by 5-HT. Similarly, FRET efficiencies were the same regardless of whether measured in cells expressing the VGV or INI isoform in the absence or presence of 5-HT or clozapine. The results indicate that serotonin 5-HT(2C) receptors form homodimers regardless of whether they are in an inactive or active conformation and are not regulated by drug treatment.
    Preview · Article · Aug 2007 · European Journal of Pharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dimerization is a common property of G-protein-coupled receptors (GPCR). While the formation of GPCR dimers/oligomers has been reported to play important roles in regulating receptor expression, ligand binding, and second messenger activation, less is known about how and where GPCR dimerization occurs. The present study was performed to identify the precise cellular compartment in which class A GPCR dimer/oligomer biogenesis occurs. We addressed this issue using confocal microscopy and fluorescence resonance energy transfer (FRET) to monitor GPCR proximity within discrete intracellular compartments of intact living cells. Time-lapse confocal imaging was used to follow CFP- and YFP-tagged serotonin 5-HT2C receptors during biosynthesis in the endoplasmic reticulum (ER), trafficking through the Golgi apparatus and subsequent expression on the plasma membrane. Real-time monitoring of FRET between CFP- and YFP-tagged 5-HT2C receptors was performed by acceptor photobleaching within discrete regions of the ER, Golgi, and plasma membrane. The FRET signal was dependent on the ratio of CFP- to YFP-tagged 5-HT2C receptors expressed in each region and was independent of receptor expression level, as predicted for proteins in a non-random, clustered distribution. FRET efficiencies measured in the ER, Golgi, and plasma membrane were similar. These experiments provide direct evidence for homodimerization/oligomerization of class A GPCR in the ER and Golgi of intact living cells, and suggest that dimer/oligomer formation is a naturally occurring step in 5-HT2C receptor maturation and processing.
    No preview · Article · Oct 2006 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although dimerization appears to be a common property of G-protein-coupled receptors (GPCRs), it remains unclear whether a GPCR dimer binds one or two molecules of ligand and whether ligand binding results in activation of one or two G-proteins when measured using functional assays in intact living cells. Previously, we demonstrated that serotonin 5-hydroxytryptamine2C (5-HT2C) receptors form homodimers (Herrick-Davis, K., Grinde, E., and Mazurkiewicz, J. (2004) Biochemistry 43, 13963-13971). In the present study, an inactive 5-HT2C receptor was created and coexpressed with wild-type 5-HT2C receptors to determine whether dimerization regulates receptor function and to determine the ligand/dimer/G-protein stoichiometry in living cells. Mutagenesis of Ser138 to Arg (S138R) produced a 5-HT2C receptor incapable of binding ligand or stimulating inositol phosphate (IP) signaling. Confocal fluorescence imaging revealed plasma membrane expression of yellow fluorescent protein-tagged S138R receptors. Expression of wild-type 5-HT2C receptors in an S138R-expressing stable cell line had no effect on ligand binding to wild-type 5-HT2C receptors, but inhibited basal and 5-HT-stimulated IP signaling as well as constitutive and 5-HT-stimulated endocytosis of wild-type 5-HT2C receptors. M1 muscarinic receptor activation of IP production was normal in the S138R-expressing cells. Heterodimerization of S138R with wild-type 5-HT2C receptors was visualized in living cells using confocal fluorescence resonance energy transfer (FRET). FRET was dependent on the donor/acceptor ratio and independent of the receptor expression level. Therefore, inactive 5-HT2C receptors inhibit wild-type 5-HT2C receptor function by forming nonfunctional heterodimers expressed on the plasma membrane. These results are consistent with a model in which one GPCR dimer binds two molecules of ligand and one G-protein and indicate that dimerization is essential for 5-HT receptor function.
    Preview · Article · Jan 2006 · Journal of Biological Chemistry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The human serotonin 2C (5-HT2C) receptor undergoes extensive RNA editing, generating multiple isoforms; the most prominent isoform in the human brain is the extensively edited VSV isoform. In addition, a naturally occurring single nucleotide polymorphism (SNP) is found in the coding region of the 5-HT2C receptor gene, which converts cysteine to serine at the 23rd amino acid (C23S). To elucidate the functional consequences, pharmacological properties were evaluated in cells expressing C23 or S23 in the nonedited, INI, or edited, VSV, isoform. Confocal imaging of HEK293 cells expressing the C23 and S23 variants revealed no apparent difference in cellular localization, which was confirmed in NIH-3T3 fibroblasts by surface biotinylation. Competition binding experiments revealed comparable high-affinity agonist binding for the C23 and S23 receptors and no difference in ligand affinities in either the INI or VSV backbones. The dose-response functions for 5-HT and (+/-)-1-(4-iodo-2,5-dimethoxyphenyl)-2-aminopropane (DOI) to elicit phosphoinositide hydrolysis did not differ in either HEK293 or NIH-3T3 fibroblasts expressing the receptor variants. Constitutive activity, evaluated in COS-7 and HEK293 cells, also was not different. Lastly, fluorescence resonance energy transfer demonstrated homodimerization of C23 receptors, which was reproduced in cells expressing the S23 variant. We conclude that the C23S SNP in the 5-HT2C receptor has no functional consequences, even when evaluated in the most common, edited receptor backbone. Therefore, positive associations between this polymorphism and disease states may be a consequence of linkage disequilibrium with another SNP that is involved in the disease.
    Full-text · Article · Feb 2005 · The Pharmacogenomics Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: While many studies have provided evidence of homodimerization and heterodimerization of G-protein-coupled receptors (GPCRs), few studies have used fluorescence resonance energy transfer (FRET) combined with confocal microscopy to visualize receptor dimerization on the plasma membrane, and there have been no reports demonstrating the expression of serotonin receptor dimers/oligomers on the plasma membrane of living cells. In the study presented here, biochemical and biophysical techniques were used to determine if 5-HT(2C) receptors exist as homodimers on the plasma membrane of living cells. Immunoprecipitation followed by Western blotting revealed the presence of immunoreactive bands the predicted size of 5-HT(2C) receptor monomers and homodimers that were detergent and cross-linker sensitive. Bioluminescence resonance energy transfer (BRET) was assessed in HEK293 cells expressing 5-HT(2C) receptors labeled with Renilla luciferase and yellow fluorescent protein. BRET levels were not altered by pretreatment with serotonin. Confocal microscopy provided direct visualization of FRET on the plasma membrane of live cells expressing 5-HT(2C) receptors labeled with cyan (donor) and yellow (acceptor) fluorescent proteins. FRET, assessed by acceptor photobleaching, was dependent on the donor/acceptor ratio and independent of acceptor expression levels, indicating that FRET resulted from receptor clustering and not from overexpression of randomly distributed receptors, providing evidence for GPCR dimers/oligomers in a clustered distribution on the plasma membrane. The results of this study suggest that 5-HT(2C) receptors exist as constitutive homodimers on the plasma membrane of living cells. In addition, a confocal-based FRET method for monitoring receptor dimerization directly on the plasma membrane of living cells is described.
    No preview · Article · Dec 2004 · Biochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Histamine N-methyltransferase (HNMT), a cytosolic histamine-metabolizing enzyme, is the only known product of the 50-kb human HNMT. Here, a detailed investigation of HNMT products revealed the existence of a new brain mRNA product of HNMT. This species, named HNMT-Short (HNMT-S), encodes a 126-amino-acid protein. Northern blot analysis detected HNMT-S mRNA (1.0 kb) in placenta, but not in several other human tissues. In addition, unlike the known HNMT cDNA, HNMT-S cDNA did not result in histamine-methylating activity after transfection into COS-7 cells. These studies show that HNMT-S is a new mRNA species and putative protein product from HNMT. The physiological role of HNMT-S remains to be investigated.
    No preview · Article · Feb 2004 · Genomics
  • K Herrick-Davis · E Grinde · M Teitler
    [Show abstract] [Hide abstract]
    ABSTRACT: Clozapine is the prototype atypical antipsychotic drug, producing little or no extrapyramidal side effects, while improving negative symptoms of psychosis. Clozapine's high affinity for serotonin receptors has been hypothesized to confer the unique antipsychotic properties of this drug. Recently, we demonstrated that both typical and atypical antipsychotic drugs are inverse agonists at constitutively active 5-hydroxytryptamine2A (5-HT(2A)) receptors. To determine whether inverse agonist activity at 5-HT(2C) receptors plays a role in antipsychotic efficacy, typical and atypical antipsychotic drugs were tested for inhibition of basal inositol phosphate production in mammalian cells expressing rat or human 5-HT(2C) receptors. Atypical antipsychotic drugs (sertindole, clozapine, olanzapine, ziprasidone, risperidone, zotepine, tiospirone, fluperlapine, tenilapine) displayed potent inverse agonist activity at rat and human 5-HT(2C) receptors. Typical antipsychotic drugs (chlorpromazine, loxapine, thioridazine, prochlorperazine, perphenazine, mesoridazine, trifluperidol, fluphenazine, spiperone, haloperidol, pimozide, penfluridol, thiothixene) were devoid of inverse agonist activity, with the exception of loxapine. We review the evidence that loxapine has unique properties characteristic of both atypical and typical antipsychotic drugs. Several typical antipsychotic drugs (chlorpromazine, thioridazine, spiperone, thiothixene) displayed neutral antagonist activity by reversing clozapine inverse agonism. These data suggest that 5-HT(2C) inverse agonist activity is associated with atypical antipsychotic drugs with moderate to high affinity for 5-HT(2C) receptors, and imply that effects of atypical antipsychotic drugs on the 5-HT(2C) receptor may play a role in their unique clinical properties. These data also imply that dysfunction of brain 5-HT(2C) receptor systems may be one of the factors involved in the etiology of psychosis.
    No preview · Article · Nov 2000 · Journal of Pharmacology and Experimental Therapeutics
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ternary complex model as applied to G-protein coupled receptors (GPCR) predicts that an agonist binds with low affinity (K(L)) to the free receptor (R), leading to an agonist/receptor/G-protein complex. This ternary complex displays high agonist affinity (K(H)), resulting in signal transduction. Classical dogma states that the ratio K(L)/K(H) predicts intrinsic activity of drugs: the higher the ratio the higher the intrinsic activity. This model was based on studies in which K(L) and K(H) were indirectly determined by computer analyses of antagonist radioligand binding data. In order to investigate the relationship of K(L), K(H), and intrinsic activity for agonists at 5-HT(2A) and 5-HT(2C) receptors, we utilized (3)H-agonist and (3)H-antagonist radioligands to directly determine K(H) and K(L). Comparisons of the log K(L)/K(H) ratios and intrinsic activities of drugs for stimulating intracellular phosphatidylinositol (PI) hydrolysis revealed a strong correlation for 5-HT(2A) (r(2) = 0.92) and 5-HT(2C) (r(2) = 0.96) receptors. The data were fit to computer simulations based on the original ternary complex model and the revised ternary complex model in which an activated state of the receptor (R*) exists in equilibrium with the resting state of the receptor (R). Data produced for both 5-HT(2A) and 5-HT(2C) receptors were better-fitted to a revised ternary complex model, rather than the classical ternary complex model. These data support a revised model for the molecular events coupling GPCR to activation of G-proteins and indicate that a strong correlation between the K(L)/K(H) ratio and intrinsic activity for agonist action at GPCR is consistent with the existence of R*.
    No preview · Article · Feb 2000 · Synapse

  • No preview · Article · Jan 2000 · Synapse
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rat and human serotonin 5-HT2C receptor isoforms were evaluated for agonist-independent activation of inositol phosphate production in COS-7 cells. The nonedited isoform (5-HT(2C-INI)) displayed the greatest basal activity, stimulating inositol phosphate production fourfold over the fully edited isoform (5-HT(2C--VGV)). All of the other isoforms tested displayed intermediate levels of basal activity. Decreasing receptor expression levels by 50% produced a parallel decrease in basal activity. 5-HT stimulated inositol phosphate production twofold over basal levels through the 5-HT(2C-INI) receptor and eightfold over basal levels through the 5-HT(2C-VGV) receptor but produced similar maximal levels of inositol phosphate. 5-HT competition for [3H]mesulergine binding to 5-HT(2C-INI) best fit a two-site analysis with K(H) = 7.6 nM and K(L) = 160 nM, whereas 5-HT(2C-VGV) best fit a one-site model with Ki = 163 nM. [3H]5-HT labeled 36% of the total population of 5-HT(2C-INI) receptors labeled by [3H]mesulergine but only 12% of 5-HT(2C-VGV) receptors. [H]5-HT K(D) values increased from 5.1 nM for 5-HT(2C-INI) to 20 nM for 5-HT(2C-VGV). [3H]Mesulergine K(D) values were the same for both isoforms. 5-HT EC50 values for inositol phosphate production increased from 6.1 nM for 5-HT(2C-INI) to 30 nM for 5-HT(2C-VGV). These results demonstrate that RNA editing decreases 5-HT2C receptor basal activity, agonist affinity, and potency, indicating that RNA editing may play a role in regulating serotonergic signal transduction and response to drug therapy.
    Preview · Article · Nov 1999 · Journal of Neurochemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies from our laboratory have shown that the 5-HT2C serotonin receptor can be rendered constitutively active by changing amino acid 312 (third intracellular loop) from serine to lysine (S312K). In the present study, detailed radioligand binding analyses were performed to characterize the constitutively activated state of S312K mutant receptors. All agonists tested displayed high affinity for both [3H]5-HT and [3H]mesulergine binding to S312K receptors, but displayed low affinity for [3H]mesulergine binding to native 5-HT2C receptors. [3H]5-HT labeled the same total number of S312K binding sites as [3H]mesulergine. 5-HT2C antagonists inhibited S312K basal inositol phosphate production. These results suggest that S312K receptors mimic the active conformation of native 5-HT2C receptors and provide a good model system for evaluating drugs for inverse agonist activity. Also, S312K receptors may represent a new system for screening 5-HT2C agonist activity by comparing [3H]mesulergine binding to native and S312K mutant receptors.
    No preview · Article · Jan 1999 · Annals of the New York Academy of Sciences
  • K. Herrick-Davies · E. Grinde · M. Teitler

    No preview · Article ·

Publication Stats

687 Citations
50.93 Total Impact Points


  • 1999-2015
    • Albany Medical College
      • Center for Neuropharmacology and Neuroscience
      Albany, New York, United States
    • University of Washington Seattle
      • Department of Pharmacology
      Seattle, Washington, United States