Claudia Laschan

Hanusch Krankenhaus, Wien, Vienna, Austria

Are you Claudia Laschan?

Claim your profile

Publications (3)10.81 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hyperlipidemia and obesity are associated with metabolic syndrome and increased risk in developing diabetes and cardiovascular disease. Nutritional supplements, e.g. L-carnitine and polyunsaturated fatty acids (PUFAs), exert lipid-lowering effects. Hence, the hypothesis that dietetic intervention reduces plasma lipid levels and metabolic enzymes in overweight hyperlipidemic subjects was tested. In a prospective placebo-controlled double-blind study in 22 moderately hyperlipidemic obese humans consuming low-fat yoghurt enriched with a combination of low-dose PUFAs, polyphenols and L-carnitine (PPC) twice a day for 12 weeks were compared to 20 matching participants ingesting low-fat yoghurt. The effects on plasma lipids and expression of enzymes involved in regulation of fatty acid oxidation in peripheral blood mononuclear cells (PBMCs) and HepG2 cells were evaluated. PPC consumption led to significantly reduced plasma free fatty acid (-29%) and triglyceride (-24%) concentrations (each p < 0.05). PPC application increased significantly peroxisome proliferator-activated receptor α (PPARα) mRNA abundances and those of PPARα target genes (carnitine palmitoyltransferases-1, CPT1A and CPT1B, carnitine acetyltransferase and organic cation transporter 2; each p < 0.05) in PBMCs. In controls, plasma lipid levels and PBMC gene expression did not change. These findings were substantiated by the results of cell culture experiments in HepG2 cells. Supplementation of PPC had marked lipid-lowering effects and PBMC gene expression profiles seemed to reflect nutrition-related metabolic changes.
    Full-text · Article · Apr 2011 · Annals of Nutrition and Metabolism
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chemotherapy regimens based on anthracycline (doxorubicin) are well established in lymphoma therapy. The purpose of this study was to examine the effects of L-carnitine with a view to reducing cytotoxic side-effects. 20 patients were scheduled to receive 3 g L-carnitine before each chemotherapy cycle, followed by 1 g L-carnitine/day during the following 21 days, while 20 patients received a placebo (randomized controlled trial). The plasma lipid profile and relative mRNA levels of key enzymes of oxidative metabolism (carnitine acyltransferases) were measured at three points of time. In addition to the clinical parameters we used the mRNA of white blood cells to evaluate the toxic effects on cardiomyocytes. In the present study no cardiotoxicity of anthracycline therapy was detected. Carnitine treated patients showed a rise in plasma carnitine which led to an increase of relative mRNA levels from CPT1A (liver isoform of carnitine palmitoyltransferase) and OCTN2 (carnitine transporter). Following chemotherapy, an activation of carnitine acyltransferases was associated with a stimulation of OCTN2 in both groups. Biochemical and molecular analyses indicated a stimulation of oxidative metabolism in white blood cells through carnitine uptake.
    No preview · Article · Mar 2006 · Journal of Cancer Research and Clinical Oncology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Changes in key enzymes of oxidative metabolism at the mitochondrial level are known to be associated with the aging process, apoptosis, and many diseases. Considering the risk of acquiring a myelodysplastic syndrome (MDS) with age, the aim of this study was to quantify mRNA synthesis of the carnitine palmitoyltransferases (CPT1 and CPT2), carnitine acetyltransferase (CRAT), human specific microsomal CPT, and OCTN2 (organic cation transporter) in mononuclear cells of healthy humans of different age groups and MDS patients. Using quantitative reverse transcriptase real-time PCR we compared mRNA synthesis of the above mentioned enzymes in mononuclear cells from peripheral blood of 23 healthy persons (mean age 45 years), 9 blood and 22 bone marrow samples of 31 MDS patients with varying proportions of apoptotic cells (mean age 78 years), and blood samples of 30 age-matched controls. In addition, plasma carnitine levels were determined. Compared to younger adults, there was a 50% downregulation of CPT1 in elderly persons and in MDS patients. Reduction in CRAT, CPT 2, and OCTN2 was more than 85%. Reduction in microsomal CPT was more pronounced in MDS patients than in age-matched controls (96% vs. 43%). In MDS bone marrow cells there was a negative correlation of CPT1 and CRAT with the relative proportion of apoptotic cells. Plasma carnitine values were similar in all groups. The described reduction in transcription of different genes in blood cells which is well known in different tissues may reflect a systemic signaling process, associated with aging, apoptosis, and MDS.
    No preview · Article · Aug 2003 · Journal of Molecular Medicine