C Chad Quarles

Vanderbilt University, Нашвилл, Michigan, United States

Are you C Chad Quarles?

Claim your profile

Publications (26)106.83 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: The authors discuss eight areas of quantitative MR imaging that are currently used (RECIST, DCE-MR imaging, DSC-MR imaging, diffusion MR imaging) in clinical trials or emerging (CEST, elastography, hyperpolarized MR imaging, multiparameter MR imaging) as promising techniques in diagnosing cancer and assessing or predicting response of cancer to therapy. Illustrative applications of the techniques in the clinical setting are summarized before describing the current limitations of the methods.
    No preview · Article · Feb 2016 · Magnetic Resonance Imaging Clinics of North America
  • [Show abstract] [Hide abstract]
    ABSTRACT: To employ in vivo imaging and histological techniques to identify and quantify vascular changes early in the course of treatment with trastuzumab in a murine model of HER2+ breast cancer. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was used to quantitatively characterize vessel perfusion/permeability (via the parameter K trans ) and the extravascular extracellular volume fraction (v e ) in the BT474 mouse model of HER2+ breast cancer (N = 20) at baseline, day one, and day four following trastuzumab treatment (10 mg/kg). Additional cohorts of mice were used to quantify proliferation (Ki67), microvessel density (CD31), pericyte coverage (α-SMA) by immunohistochemistry (N = 44), and to quantify human VEGF-A expression (N = 29) throughout the course of therapy. Longitudinal assessment of combination doxorubicin ± trastuzumab (N = 42) tested the hypothesis that prior treatment with trastuzumab will increase the efficacy of subsequent doxorubicin therapy. Compared to control tumors, trastuzumab-treated tumors exhibited a significant increase in K trans (P = 0.035) on day four, indicating increased perfusion and/or vessel permeability and a simultaneous significant increase in v e (P = 0.01), indicating increased cell death. Immunohistochemical and ELISA analyses revealed that by day four the trastuzumab-treated tumors had a significant increase in vessel maturation index (i.e., the ratio of α-SMA to CD31 staining) compared to controls (P < 0.001) and a significant decrease in VEGF-A (P = 0.03). Additionally, trastuzumab dosing prior to doxorubicin improved the overall effectiveness of the therapies (P < 0.001). This study identifies and validates improved perfusion characteristics following trastuzumab therapy, resulting in an improvement in trastuzumab-doxorubicin combination therapy in a murine model of HER2+ breast cancer. This data suggests properties of vessel maturation. In particular, the use of DCE-MRI, a clinically available imaging method, following treatment with trastuzumab may provide an opportunity to optimize the scheduling and improve delivery of subsequent cytotoxic therapy.
    No preview · Article · Jan 2016 · Breast Cancer Research and Treatment
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Diabetic nephropathy (DN) is the leading cause of renal failure; however, current clinical tests are insufficient for assessing this disease. DN is associated with changes in renal metabolites, so we evaluated the utility of chemical exchange saturation transfer (CEST) imaging to detect changes characteristic of this disease. Methods: Sensitivity of CEST imaging at 7 Tesla to DN was evaluated by imaging diabetic mice [db/db, db/db endothelial nitric oxide synthase (eNOS)-/-] that show different levels of nephropathy as well as by longitudinal imaging (8 to 24 weeks). Nondiabetic (db/m) mice were used as controls. Results: Compared with nondiabetic mice, the CEST contrasts of hydroxyl metabolites that correspond to glucose and glycogen were significantly increased in papilla (P), inner medulla (IM), and outer medulla (OM) in db/db and db/db eNOS-/- kidneys at 16 weeks. The db/db eNOS-/- mice that showed advanced nephropathy exhibited greater CEST effects in OM and significant CEST contrasts were also observed in cortex. Longitudinally, db/db mice exhibited progressive increases in hydroxyl signals in IM+P and OM from 12 to 24 weeks and an increase was also observed in cortex at 24 weeks. Conclusion: CEST MRI can be used to measure changes of hydroxyl metabolites in kidney during progression of DN. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Nov 2015 · Magnetic Resonance in Medicine
  • Source
    J T Skinner · P L Moots · G D Ayers · C C Quarles
    [Show abstract] [Hide abstract]
    ABSTRACT: Background and purpose: Contrast agent extravasation has been shown to confound brain tumor perfusion measurements with DSC-MR imaging, necessitating the use of correction techniques (eg, Weisskoff, Bjornerud). Leakage parameters (K2 and Ka) postulated to reflect vessel permeability can be extracted from these correction methods; however, the biophysical interpretation of these parameters and their relationship to commonly used MR imaging measures of vascular permeability (eg, contrast agent volume transfer constant, [K(trans)]) remain unclear. Given that vascular density, as assessed by blood volume, and vascular permeability, as reflected by K(trans) (and potentially K2 or Ka), report on unique and clinically informative vascular characteristics, there is a compelling interest to simultaneously assess these features. Materials and methods: We acquired multiecho DSC-MR imaging data, allowing the simultaneous computation and voxelwise comparison of single- and dual-echo derived measures of K2, Ka and K(trans) in patients with glioma. This acquisition enabled the investigation of competing T1 and T2* leakage effects and TE dependency on these parameters. Results: K2 and Ka displayed nonsignificant (P = .150 and P = .060, respectively) voxelwise linear correlations with K(trans), while a significant (P < .001) inverse relationship was observed between K2 and Ka (coefficient of determination [r(2)] = 0.466-0.984). Significantly different (P < .005) mean estimates were found between voxels exhibiting predominately T1 and T2* effects for K2 and Ka. K(trans), however, was observed to be similar between these voxels (0.109 versus 0.092 minutes(-1)). Significant differences (P < .001) in extracellular-extravascular volume fraction (ve) (0.285 versus 0.167) were also observed between cohorts. Additionally, K2 and Ka were found to have a significant quadratic relationship (P = .031 and P = .005, respectively) with ve. Conclusions: Estimates of vascular permeability in brain tumors may be simultaneously acquired from multiple-echo DSC-MR imaging via K(trans); however, caution should be used in assuming a similar relationship for K2 and Ka.
    Full-text · Article · Oct 2015 · American Journal of Neuroradiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PurposeThe goal of this study was to investigate the influence of water compartmentation and heterogeneous relaxation properties on quantitative magnetization transfer (qMT) imaging in tissues, and in particular whether a two-pool model is sufficient to describe qMT data in brain tumors.Methods Computer simulations and in vivo experiments with a series of qMT measurements before and after injection of Gd-DTPA were performed. Both off-resonance pulsed saturation (pulsed) and on-resonance selective inversion recovery (SIR) qMT methods were used, and all data were fit with a two-pool model only.ResultsSimulations indicated that a two-pool fitting of four-pool data yielded accurate measures of pool size ratio (PSR) of macromolecular versus free water protons when there were fast transcytolemmal exchange and slow R1 recovery. The fitted in vivo PSR of both pulsed and SIR qMT methods showed no dependence on R1 variations caused by different concentrations of Gd-DTPA during wash-out, whereas the fitted kex (magnetization transfer exchange rate) changed significantly with R1.ConclusionA two-pool model provides reproducible estimates of PSR in brain tumors independent of relaxation properties in the presence of relatively fast transcytolemmal exchange, whereas estimates of kex are biased by relaxation variations. In addition, estimates of PSR in brain tumors using the pulsed and SIR qMT methods agree well with one another. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
    Full-text · Article · Sep 2015 · Magnetic Resonance in Medicine
  • Ashley M Stokes · Natenael Semmineh · C Chad Quarles
    [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: A combined biophysical- and pharmacokinetic-based method is proposed to separate, quantify, and correct for both T1 and T2* leakage effects using dual-echo dynamic susceptibility contrast (DSC) acquisitions to provide more accurate hemodynamic measures, as validated by a reference intravascular contrast agent (CA). Theory and methods: Dual-echo DSC-MRI data were acquired in two rodent glioma models. The T1 leakage effects were removed and also quantified to subsequently correct for the remaining T2* leakage effects. Pharmacokinetic, biophysical, and combined biophysical and pharmacokinetic models were used to obtain corrected cerebral blood volume (CBV) and cerebral blood flow (CBF), and these were compared with CBV and CBF from an intravascular CA. Results: T1 -corrected CBV was significantly overestimated compared with MION CBV, while T1 + T2*-correction yielded CBV values closer to the reference values. The pharmacokinetic and simplified biophysical methods showed similar results and underestimated CBV in tumors exhibiting strong T2* leakage effects. The combined method was effective for correcting T1 and T2* leakage effects across tumor types. Conclusion: Correcting for both T1 and T2* leakage effects yielded more accurate measures of CBV. The combined correction method yields more reliable CBV measures than either correction method alone, but for certain brain tumor types (e.g., gliomas), the simplified biophysical method may provide a robust and computationally efficient alternative. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Sep 2015 · Magnetic Resonance in Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Kidney size adaptively increases as mammals grow and in response to the loss of 1 kidney. It is not clear how kidneys size themselves or if the processes that adapt kidney mass to lean body mass also mediate renal hypertrophy following unilateral nephrectomy (UNX). Here, we demonstrated that mice harboring a proximal tubule-specific deletion of Pten (PtenptKO) have greatly enlarged kidneys as the result of persistent activation of the class I PI3K/mTORC2/AKT pathway and an increase of the antiproliferative signals p21Cip1/WAF and p27Kip1. Administration of rapamycin to PtenptKO mice diminished hypertrophy. Proximal tubule-specific deletion of Egfr in PtenptKO mice also attenuated class I PI3K/mTORC2/AKT signaling and reduced the size of enlarged kidneys. In PtenptKO mice, UNX further increased mTORC1 activation and hypertrophy in the remaining kidney; however, mTORC2-dependent AKT phosphorylation did not increase further in the remaining kidney of PtenptKO mice, nor was it induced in the remaining kidney of WT mice. After UNX, renal blood flow and amino acid delivery to the remaining kidney rose abruptly, followed by increased amino acid content and activation of a class III PI3K/mTORC1/S6K1 pathway. Thus, our findings demonstrate context-dependent roles for EGFR-modulated class I PI3K/mTORC2/AKT signaling in the normal adaptation of kidney size and PTEN-independent, nutrient-dependent class III PI3K/mTORC1/S6K1 signaling in the compensatory enlargement of the remaining kidney following UNX.
    Full-text · Article · May 2015 · The Journal of clinical investigation
  • Ashley M. Stokes · C. Chad Quarles
    [Show abstract] [Hide abstract]
    ABSTRACT: PurposeIn this study, we propose a simplified acquisition and analysis approach for spin and gradient echo (SAGE)-based dynamic susceptibility-contrast MRI (DSC-MRI) data that is free of contrast agent T1 leakage effects.MethodsA five-echo SAGE sequence was used to acquire DSC-MRI data in rat C6 tumors (n = 7). Nonlinear fitting of all echoes was performed to obtain T1-insensitive ΔR2* and ΔR2 time series. The simplified approach, which includes two gradient echoes and one spin echo, was also used to analytically compute T1-insensitive ΔR2* using the two gradient echoes and ΔR2 using all three echoes. The blood flow, blood volume, and vessel size values derived from each method were compared.ResultsIn all cases, the five-echo and simplified SAGE ΔR2* and ΔR2 were in excellent agreement and demonstrated significant T1 leakage correction compared with the uncorrected single-echo data. The derived hemodynamic parameters for blood volume, blood flow, and vessel size were not significantly different between the two methods.Conclusions The proposed simplified SAGE technique enables the acquisition of gradient and spin echo DSC-MRI data corrected for T1 leakage effects yields parameters that are in agreement with the five-echo SAGE approach and does not require nonlinear fitting to extract ΔR2* and ΔR2 time series. Magn Reson Med, 2015. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Mar 2015 · Magnetic Resonance in Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Perfusion-based changes in MR signal intensity can occur in response to the introduction of exogenous contrast agents and endogenous tissue properties (e.g. blood oxygenation). MR measurements aimed at capturing these changes often implement single-shot echo planar imaging (ssEPI). In recent years ssEPI readouts have been combined with parallel imaging (PI) to allow fast dynamic multi-slice imaging as well as the incorporation of multiple echoes. A multiple spin- and gradient-echo (SAGE) EPI acquisition has recently been developed to allow measurement of transverse relaxation rate (R2 and R2⁎) changes in dynamic susceptibility contrast (DSC)-MRI experiments in the brain. With SAGE EPI, the use of PI can influence image quality, temporal resolution, and achievable echo times. The effect of PI on dynamic SAGE measurements, however, has not been evaluated. In this work, a SAGE EPI acquisition utilizing SENSE PI and partial Fourier (PF) acceleration was developed and evaluated. Voxel-wise measures of R2 and R2⁎ in healthy brain were compared using SAGE EPI and conventional non-EPI multiple echo acquisitions with varying SENSE and PF acceleration. A conservative SENSE factor of 2 with PF factor of 0.73 was found to provide accurate measures of R2 and R2⁎ in white (WM) (rR2 = [0.55-0.79], rR2⁎ = [0.47-0.71]) and gray (GM) matter (rR2 = [0.26-0.59], rR2⁎ = [0.39-0.74]) across subjects. The combined use of SENSE and PF allowed the first dynamic SAGE EPI measurements in muscle, with a SENSE factor of 3 and PF factor of 0.6 providing reliable relaxation rate estimates when compared to multi-echo methods. Application of the optimized SAGE protocol in DSC-MRI of high-grade glioma patients provided T1 leakage-corrected estimates of CBV and CBF as well as mean vessel diameter (mVD) and simultaneous measures of DCE-MRI parameters Ktrans and ve. Likewise, application of SAGE in a muscle reperfusion model allowed dynamic measures of R2’, a parameter that has been shown to correlate with muscle oxy-hemoglobin saturation.
    No preview · Article · Dec 2014 · Magnetic Resonance Imaging
  • Source
    Stephanie L Barnes · C Chad Quarles · Thomas E Yankeelov
    [Show abstract] [Hide abstract]
    ABSTRACT: Quantitative dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides estimates of physiologically relevant parameters related to tissue blood flow, vascular permeability, and tissue volume fractions which can then be used for prognostic and diagnostic reasons. However, standard techniques for DCE-MRI analysis ignore intra-voxel diffusion, which may play an important role in contrast agent distribution and voxel signal intensity and, thus, will affect quantification of the aforementioned parameters. To investigate the effect of intra-voxel diffusion on quantitative DCE-MRI, we developed a finite element model of contrast enhancement at the voxel level. For diffusion in the range of that expected for gadolinium chelates in tissue (i.e., 1×10-4 to 4×10-4 mm2/s), parameterization errors range from -58% to 12% for Ktrans, -9% to 8% for ve, and -60% to 213% for vp over the range of Ktrans, ve, vp, and temporal resolutions investigated. Thus the results show that diffusion has a significant effect on parameterization using standard techniques.
    Full-text · Article · Oct 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: PurposeIn brain tumor dynamic susceptibility contrast (DSC)-MRI studies, multiecho acquisition methods are used to quantify the dynamic changes in T1 and T2* that occur when contrast agent (CA) extravasates. Such methods also enable the estimation of the effective tissue CA transverse relaxivity. The goal of this study was to evaluate the sensitivity of the transverse relaxivity at tracer equilibrium (TRATE) to tumor cytoarchitecture.Methods Computational and in vitro studies were used to evaluate the biophysical basis of TRATE. In 9L, C6, and human brain tumors, TRATE, the apparent diffusion coefficient (ADC), the CA transfer constant (Ktrans), the extravascular extracellular volume fraction (ve), and histological data were compared.ResultsSimulations and in vitro results indicate that TRATE is highly sensitive to variations in cellular properties such as cell size and density. The histologic cell density and TRATE values were significantly higher in 9L tumors as compared to C6 tumors. In animal and human tumors, a voxel-wise comparison of TRATE with ADC, ve, and Ktrans maps showed low spatial correlation.Conclusion The assessment of TRATE is clinically feasible and its sensitivity to tissue cytoarchitectural features not present in other imaging methods indicate that it could potentially serve as a unique structural signature or “trait” of cancer. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
    Full-text · Article · Sep 2014 · Magnetic Resonance in Medicine
  • Ashley M Stokes · Jack T Skinner · C Chad Quarles
    [Show abstract] [Hide abstract]
    ABSTRACT: The goal of this study was to optimize and validate a combined spin- and gradient-echo (SAGE) sequence for dynamic susceptibility contrast (DSC)-MRI to obtain hemodynamic parameters in a preclinical setting. The SAGE EPI sequence was applied in phantoms and in vivo rat brain (normal, tumor, and stroke tissue). Partial and full Fourier encoding schemes were implemented and characterized. Maps of cerebral blood volume (CBV), cerebral blood flow (CBF), mean transit time (MTT), vessel size index (VSI), volume transfer constant (K(trans)), and volume fraction of the extravascular extracellular space (ve) were obtained. Partial Fourier encoding provided shortened echo times with acceptable SNR and temporal stability, thus enabling reliable characterization of T2, T2(⁎) and T1 in both phantoms and rat brain. The hemodynamic parameters CBV, CBF, and MTT for gradient-echo and spin-echo contrast were determined in tumor and stroke; VSI, K(trans), and ve were also computed in tumor tissue. The SAGE EPI sequence allows the acquisition of multiple gradient- and spin-echoes, from which measures of perfusion, permeability, and vessel size can be obtained in a preclinical setting. Partial Fourier encoding can be used to minimize SAGE echo times and reliably quantify dynamic T2 and T2(⁎) changes. This acquisition provides a more comprehensive assessment of hemodynamic status in brain tissue with vascular and perfusion abnormalities.
    No preview · Article · Aug 2014 · Magnetic Resonance Imaging
  • Thomas E Yankeelov · Richard G Abramson · C Chad Quarles
    [Show abstract] [Hide abstract]
    ABSTRACT: Advances in hardware and software have enabled the realization of clinically feasible, quantitative multimodality imaging of tissue pathophysiology. Earlier efforts relating to multimodality imaging of cancer have focused on the integration of anatomical and functional characteristics, such as PET-CT and single-photon emission CT (SPECT-CT), whereas more-recent advances and applications have involved the integration of multiple quantitative, functional measurements (for example, multiple PET tracers, varied MRI contrast mechanisms, and PET-MRI), thereby providing a more-comprehensive characterization of the tumour phenotype. The enormous amount of complementary quantitative data generated by such studies is beginning to offer unique insights into opportunities to optimize care for individual patients. Although important technical optimization and improved biological interpretation of multimodality imaging findings are needed, this approach can already be applied informatively in clinical trials of cancer therapeutics using existing tools. These concepts are discussed herein.
    No preview · Article · Aug 2014 · Nature Reviews Clinical Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study is to evaluate the utility of high-resolution non-invasive endogenous high-field MRI methods for the longitudinal structural and quantitative assessments of mouse kidney disease using the model of unilateral ureter obstruction (UUO). T1-weighted, T2-weighted and magnetization transfer (MT) imaging protocols were optimized to improve the regional contrast in mouse kidney. Conventional T1 and T2 weighted images were collected in UUO mice on day 0 (~3 h), day 1, day 3 and day 6 after injury, on a 7 T small animal MRI system. Cortical and medullary thickness, corticomedullary contrast and Magnetization Transfer Ratio (MTR) were assessed longitudinally. Masson trichrome staining was used to histologically assess changes in tissue microstructure. Over the course of UUO progression there were significant (p b 0.05) changes in thickness of cortex and outer medulla, and regional changes in T2 signal intensity and MTR values. Histological changes included tubular cell death, tubular dilation, urine retention, and interstitial fibrosis, assessed by histology. The MRI measures of renal cortical and medullary atrophy, cortical–medullary differentiation and MTR changes provide an endogenous, non-invasive and quantitative evaluation of renal morphology and tissue composition during UUO progression.
    Full-text · Article · Aug 2014 · Magnetic Resonance Imaging
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigates amide proton transfer (APT) and nuclear overhauser enhancement (NOE) in phantoms and 9L tumors in rat brains at 9.4 Tesla, using a recently developed method that can isolate different contributions to exchange. Chemical exchange rotation transfer (CERT) was used to quantify APT and NOEs through subtraction of signals acquired at two irradiation flip angles, but with the same average irradiation power. CERT separates and quantifies specific APT and NOE signals without contamination from other proton pools, and thus overcomes a key shortcoming of conventional CEST asymmetry approaches. CERT thus has increased specificity, though at the cost of decreased signal strength. In vivo experiments show that the APT effect acquired with CERT in 9L rat tumors (3.1%) is relatively greater than that in normal tissue (2.5%), which is consistent with previous CEST asymmetry analysis. The NOE effect centered at -1.6 ppm shows substantial image contrast within the tumor and between the tumor and the surrounding tissue, while the NOE effect centered at -3.5 ppm shows little contrast. CERT provides an image contrast that is more specific to chemical exchange than conventional APT by means of asymmetric CEST Z-spectra analysis. Magn Reson Med, 2013. © 2013 Wiley Periodicals, Inc.
    Full-text · Article · Aug 2014 · Magnetic Resonance in Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the repeatability of MRI-derived relative blood volume (RBV) measurements in mouse kidneys across subjects and days and to evaluate sensitivity of this approach to renal pathology. A 7 Tesla MRI system and an intravascular iron-oxide contrast agent were used to acquire spin-echo-based renal RBV maps in 10 healthy mice on 2 consecutive days. Renal RBV maps were also acquired in the Alport and unilateral ureteral obstruction mouse models of renal disease. The average renal RBV measured on consecutive days was 19.97 ± 1.50 and 19.86 ± 1.62, yielding a concordance correlation coefficient of 0.94, indicating that this approach is highly repeatable. In the disease models, the RBV values were regionally dissimilar and substantially lower than those found in control mice. In vivo renal iron-oxide-based RBV mapping in mice complements the physiological information obtained from conventional assays of kidney function and could shed new insights into the pathological mechanisms of kidney disease. J. Magn. Reson. Imaging 2013. © 2013 Wiley Periodicals, Inc.
    Full-text · Article · Apr 2014 · Journal of Magnetic Resonance Imaging
  • Nilesh Mistry · Ashley M Stokes · James Van Gambrell · Christopher Chad Quarles
    [Show abstract] [Hide abstract]
    ABSTRACT: Nitrite undergoes reconversion to nitric oxide under conditions characteristic of the tumor microenvironment, such as hypoxia and low pH. This selective conversion of nitrite into nitric oxide in tumor tissue has led to the possibility of using nitrite to enhance drug delivery and the radiation response. In this work, we propose to serially characterize the vascular response of brain tumor-bearing rats to nitrite using contrast-enhanced R2 * mapping. Imaging is performed using a multi-echo gradient echo sequence at baseline, post iron oxide nanoparticle injection and post-nitrite injection, whilst the animal is breathing air. The results indicate that nitrite sufficiently increases the vascular permeability in C6 gliomas, such that the iron oxide nanoparticles accumulate within the tumor tissue. When animals breathed 100% oxygen, the contrast agent remained within the vasculature, indicating that the conversion of nitrite to nitric oxide occurs in the presence of hypoxia within the tumor. The hypoxia-dependent, nitrite-induced extravasation of iron oxide nanoparticles observed herein has implications for the enhancement of conventional and nanotherapeutic drug delivery. Copyright © 2014 John Wiley & Sons, Ltd.
    No preview · Article · Apr 2014 · NMR in Biomedicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The systematic investigation of susceptibility-induced contrast in MRI is important to better interpret the influence of microvascular and microcellular morphology on DSC-MRI derived perfusion data. Recently, a novel computational approach called the Finite Perturber Method (FPM), which enables the study of susceptibility-induced contrast in MRI arising from arbitrary microvascular morphologies in 3D has been developed. However, the FPM has lower efficiency in simulating water diffusion especially for complex tissues. In this work, an improved computational approach that combines the FPM with a matrix-based finite difference method (FDM), which we call the Finite Perturber the Finite Difference Method (FPFDM), has been developed in order to efficiently investigate the influence of vascular and extravascular morphological features on susceptibility-induced transverse relaxation. The current work provides a framework for better interpreting how DSC-MRI data depend on various phenomena, including contrast agent leakage in cancerous tissues and water diffusion rates. In addition, we illustrate using simulated and micro-CT extracted tissue structures the improved FPFDM along with its potential applications and limitations.
    Full-text · Article · Jan 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Classic signal processing theory dictates that, in order to faithfully reconstruct a band-limited signal (e.g., an image), the sampling rate must be at least twice the maximum frequency contained within the signal, i.e., the Nyquist frequency. Recent developments in applied mathematics, however, have shown that it is often possible to reconstruct signals sampled below the Nyquist rate. This new method of compressed sensing (CS) requires that the signal have a concise and extremely dense representation in some mathematical basis. Magnetic resonance imaging (MRI) is particularly well suited for CS approaches, owing to the flexibility of data collection in the spatial frequency (Fourier) domain available in most MRI protocols. With custom CS acquisition and reconstruction strategies, one can quickly obtain a small subset of the full data and then iteratively reconstruct images that are consistent with the acquired data and sparse by some measure. Successful use of CS results in a substantial decrease in the time required to collect an individual image. This extra time can then be harnessed to increase spatial resolution, temporal resolution, signal-to-noise, or any combination of the three. In this article, we first review the salient features of CS theory and then discuss the specific barriers confronting CS before it can be readily incorporated into clinical quantitative MRI studies of cancer. We finally illustrate applications of the technique by describing examples of CS in dynamic contrast-enhanced MRI and dynamic susceptibility contrast MRI.
    Full-text · Article · Dec 2013 · Cancer Imaging
  • C Chad Quarles · John C Gore · Lei Xu · Thomas E Yankeelov
    [Show abstract] [Hide abstract]
    ABSTRACT: The application of dynamic susceptibility contrast (DSC) MRI methods to assess brain tumors is often confounded by the extravasation of contrast agent (CA). Disruption of the blood-brain barrier allows CA to leak out of the vasculature leading to additional T(1), T(2) and T(2) relaxation effects in the extravascular space, thereby affecting the signal intensity time course in a complex manner. The goal of this study was to validate a dual-echo DSC-MRI approach that separates and quantifies the T(1) and T(2) contributions to the acquired signal and enables the estimation of the volume transfer constant, K(trans), and the volume fraction of the extravascular extracellular space, v(e). To test the validity of this approach, DSC-MRI- and dynamic contrast enhanced (DCE) MRI-derived K(trans) and v(e) estimates were spatially compared in both 9L and C6 rat brain tumor models. A high degree of correlation (concordance correlation coefficients >0.83, Pearson's r>0.84) and agreement was found between the DSC-MRI- and DCE-MRI-derived measurements. These results indicate that dual-echo DSC-MRI can be used to simultaneously extract reliable DCE-MRI kinetic parameters in brain tumors in addition to conventional blood volume and blood flow metrics.
    No preview · Article · May 2012 · Magnetic Resonance Imaging

Publication Stats

191 Citations
106.83 Total Impact Points

Institutions

  • 2007-2016
    • Vanderbilt University
      • • Vanderbilt Institute of Imaging Science
      • • Department of Radiology and Radiological Sciences
      Нашвилл, Michigan, United States