B. Maffei

The University of Manchester, Manchester, England, United Kingdom

Are you B. Maffei?

Claim your profile

Publications (283)570.94 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Q and U Bolometric Interferometer for Cosmology (QUBIC) is a Fizeau interferometer sensitive to linear polarisation, to be deployed at the Antarctic station of Dome C. This experiment in its final configuration will be operated at 97, 150 and 220 GHz and is intended to target CMB primordial B-modes in a multipole window (Formula presented.). A sensitivity of (Formula presented.) (95 % CL) can be reached by the first module alone, after 2 years of operation. Here we review in particular its working principles, and we show how the QUBIC interferometric configuration can be considered equivalent to a pupil-plane filtered imaging system. In this context, we show how our instrument can be self-calibrated. Finally, we conclude by showing an overview of the first dual-band module (150/220 GHz), which will serve also as a demonstrator for the subsequent units, and review the technological choices we made for each subsystem, with particular emphasis on the detection system.
    No preview · Article · Dec 2015 · Journal of Low Temperature Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The lensing-induced $B$-mode signal is a valuable probe of the dark matter distribution integrated back to the last-scattering surface, with a broad kernel that peaks at $z\simeq2$. It also constitutes an important contaminant for the extraction of the primary CMB $B$-modes from inflation. Combining all-sky coverage and high resolution and sensitivity, Planck provides accurate nearly all-sky measurements of both the polarization $E$-mode signal and the integrated mass distribution via the reconstruction of the CMB gravitational lensing. By combining these two data products, we have produced an all-sky template map of the secondary CMB $B$-modes using a real-space algorithm that minimizes the impact of sky masks. The cross-correlation of this template with an observed (primordial and secondary) $B$-mode map can be used to measure the lensing $B$-mode power spectrum at all angular scales. In particular when cross-correlating with the $B$-mode contribution directly derived from the Planck polarization maps, we obtain lensing-induced $B$-mode power spectrum measurements at a significance of $12\,\sigma$, which are in agreement with the theoretical expectation derived from the \Planck\ best-fit $\Lambda$CDM model. This unique nearly all-sky secondary $B$-mode template, which includes the lensing-induced information from intermediate to small ($10\lesssim \ell\lesssim 1000$) angular scales, is delivered as part of the Planck 2015 public data release. It will be particularly useful for experiments searching for primordial $B$-modes, such as BICEP2/Keck Array or LiteBIRD, since it will enable an estimate to be made of the secondary (i.e., lensing) contribution to the measured total CMB $B$-modes.
    Full-text · Article · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Virgo cluster is the largest Sunyaev-Zeldovich (SZ) source in the sky, both in terms of angular size and total integrated flux. Planck's wide angular scale and frequency coverage, together with its high sensitivity, allow a detailed study of this large object through the SZ effect. Virgo is well resolved by Planck, showing an elongated structure, which correlates well with the morphology observed from X-rays, but extends beyond the observed X-ray signal. We find a good agreement between the SZ signal (or Compton paranmeter, y_c) observed by Planck and the expected signal inferred from X-ray observations and simple analytical models. Due to its proximity to us, the gas beyond the virial radius can be studied with unprecedented sensitivity by integrating the SZ signal over tens of square degrees. We study the signal in the outskirts of Virgo and compare it with analytical models and a constrained simulation of the environment of Virgo. Planck data suggest that significant amounts of low-density plasma surround Virgo out to twice the virial radius. We find the SZ signal in the outskirts of Virgo to be consistent with a simple model that extrapolates the inferred pressure at lower radii while assuming that the temperature stays in the keV range beyond the virial radius. The observed signal is also consistent with simulations and points to a shallow pressure profile in the outskirts of the cluster. This reservoir of gas at large radii can be linked with the hottest phase of the elusive warm/hot intergalactic medium. Taking the lack of symmetry of Virgo into account, we find that a prolate model is favoured by the combination of SZ and X-ray data, in agreement with predictions.
    Full-text · Article · Nov 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We discuss the detectability of large-scale HI intensity fluctuations using the FAST telescope. We present forecasts for the accuracy of measuring the Baryonic Acoustic Oscillations and constraining the properties of dark energy. The FAST $19$-beam L-band receivers ($1.05$--$1.45$ GHz) can provide constraints on the matter power spectrum and dark energy equation of state parameters ($w_{0},w_{a}$) that are comparable to the BINGO and CHIME experiments. For one year of integration time we find that the optimal survey area is $6000\,{\rm deg}^2$. However, observing with larger frequency coverage at higher redshift ($0.95$--$1.35$ GHz) improves the projected errorbars on the HI power spectrum by more than $2~\sigma$ confidence level. The combined constraints from FAST, CHIME, BINGO and Planck CMB observations can provide reliable, stringent constraints on the dark energy equation of state.
    Preview · Article · Nov 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a part of a European Space Agency critical enabling technology programme, we are developing a large 1.2 m diameter reflective half-wave plate polariser for use in a spaceborne cosmic microwave background B-mode polarisation detection experiment. From an initial study phase we have established the polariser radio frequency performance requirements and present these along with corresponding room temperature measurements of a sample device in the frequency range 75-350 GHz. We briefly describe our measurement setup, and a new cryogenic facility that is being developed to allow low temperature performance measurements of device samples. Data acquired to date show that the polariser exhibits a near 150% bandwidth and meets key performance specifications associated with transmission, modulation efficiency and cross polarisation discrimination.
    No preview · Conference Paper · Oct 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: A few millimetre and sub-mm astronomical instruments have made use of an active polarisation modular such as a half-wave plate (HWP). Now that much emphasis is put on the accurate measurements of the CMB polarisation and its associated foregrounds, several new instruments are planning to use a high efficiency and low-systematics HWP. An embedded reflective HWP (ERHWP) has several thermo mechanical advantages. It also allows for a large spectral coverage with only one device. This is the reason why the COrE proposal submitted in 2010 to the ESA M3 mission call included a RHWP as the first element in the optical chain. Funded by an ESA contract, our consortium is developing such a ERHWP covering a spectrum ranging from 70 to 600 GHz. The ultimate goal is to produce such a low systematic effect component with a 1.2 m diameter. While new facilities are being developed to allow for such a diameter to be manufactured, initial smaller diameter prototypes have been manufactured and tested. We present here the RF beam characterisation of a 20 cm diameter ERHWP prototype. Using a 3D field scanner, co and cross-polarisation beam maps resulting of a corrugated horn – ERHWP system have been measured in the W-band. From these measurements, the impact on the beam ellipticity due to the introduction of the ERHWP is analysed, as well as any other beam shape modifications that might be introduced.
    No preview · Conference Paper · Oct 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use Planck data to detect the cross-correlation between the thermal Sunyaev-Zeldovich (tSZ) effect and the infrared emission from the galaxies that make up the the cosmic infrared background (CIB). We first perform a stacking analysis towards Planck-confirmed galaxy clusters. We detect infrared emission produced by dusty galaxies inside these clusters and demonstrate that the infrared emission is about 50% more extended than the tSZ effect. Modelling the emission with a Navarro--Frenk--White profile, we find that the radial profile concentration parameter is $c_{500} = 1.00^{+0.18}_{-0.15}$. This indicates that infrared galaxies in the outskirts of clusters have higher infrared flux than cluster-core galaxies. We also study the cross-correlation between tSZ and CIB anisotropies, following three alternative approaches based on power spectrum analyses: (i) using a catalogue of confirmed clusters detected in Planck data; (ii) using an all-sky tSZ map built from Planck frequency maps; and (iii) using cross-spectra between Planck frequency maps. With the three different methods, we detect the tSZ-CIB cross-power spectrum at significance levels of (i) 6 $\sigma$, (ii) 3 $\sigma$, and (iii) 4 $\sigma$. We model the tSZ-CIB cross-correlation signature and compare predictions with the measurements. The amplitude of the cross-correlation relative to the fiducial model is $A_{\rm tSZ-CIB}= 1.2\pm0.3$. This result is consistent with predictions for the tSZ-CIB cross-correlation assuming the best-fit cosmological model from Planck 2015 results along with the tSZ and CIB scaling relations.
    Full-text · Article · Sep 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We update the all-sky Planck catalogue of 1227 clusters and cluster candidates (PSZ1) published in March 2013, derived from detections of the Sunyaev-Zeldovich (SZ) effect using the first 15.5 months of Planck satellite observations. As an addendum, we deliver an updated version of the PSZ1 catalogue, reporting the further confirmation of 86 Planck-discovered clusters. In total, the PSZ1 now contains 947 confirmed clusters, of which 214 were confirmed as newly discovered clusters through follow-up observations undertaken by the Planck Collaboration. The updated PSZ1 contains redshifts for 913 systems, of which 736 (similar to 80.6%) are spectroscopic, and associated mass estimates derived from the Y-z mass proxy. We also provide a new SZ quality flag for the remaining 280 candidates. This flag was derived from a novel artificial neural-network classification of the SZ signal. Based on this assessment, the purity of the updated PSZ1 catalogue is estimated to be 94%. In this release, we provide the full updated catalogue and an additional readme file with further information on the Planck SZ detections.
    Full-text · Article · Sep 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Planck mission, thanks to its large frequency range and all-sky coverage, has a unique potential for systematically detecting the brightest, and rarest, submillimetre sources on the sky, including distant objects in the high-redshift Universe traced by their dust emission. A novel method, based on a component-separation procedure using a combination of Planck and IRAS data, has been applied to select the most luminous cold submm sources with spectral energy distributions peaking between 353 and 857GHz at 5' resolution. A total of 2151 Planck high-z source candidates (the PHZ) have been detected in the cleanest 26% of the sky, with flux density at 545GHz above 500mJy. Embedded in the cosmic infrared background close to the confusion limit, these high-z candidates exhibit colder colours than their surroundings, consistent with redshifts z>2, assuming a dust temperature of 35K and a spectral index of 1.5. First follow-up observations obtained from optical to submm have confirmed that this list consists of two distinct populations. A small fraction (around 3%) of the sources have been identified as strongly gravitationally lensed star-forming galaxies, which are amongst the brightest submm lensed objects (with flux density at 545GHz ranging from 350mJy up to 1Jy) at redshift 2 to 4. However, the vast majority of the PHZ sources appear as overdensities of dusty star-forming galaxies, having colours consistent with z>2, and may be considered as proto-cluster candidates. The PHZ provides an original sample, complementary to the Planck Sunyaev-Zeldovich Catalogue; by extending the population of the virialized massive galaxy clusters to a population of sources at z>1.5, the PHZ may contain the progenitors of today's clusters. Hence the PHZ opens a new window on the study of the early ages of structure formation, and the understanding of the intensively star-forming phase at high-z.
    Full-text · Article · Aug 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: H i intensity mapping is an emerging tool to probe dark energy. Observations of the redshifted H i signal will be contaminated by instrumental noise, atmospheric and Galactic foregrounds. The latter is expected to be four orders of magnitude brighter than the H i emission we wish to detect. We present a simulation of single-dish observations including an instrumental noise model with 1/f and white noise, and sky emission with a diffuse Galactic foreground and H i emission. We consider two foreground cleaning methods: spectral parametric fitting and principal component analysis. For a smooth frequency spectrum of the foreground and instrumental effects, we find that the parametric fitting method provides residuals that are still contaminated by foreground and 1/f noise, but the principal component analysis can remove this contamination down to the thermal noise level. This method is robust for a range of different models of foreground and noise, and so constitutes a promising way to recover the H i signal from the data. However, it induces a leakage of the cosmological signal into the subtracted foreground of around 5 per cent. The efficiency of the component separation methods depends heavily on the smoothness of the frequency spectrum of the foreground and the 1/f noise. We find that as long as the spectral variations over the band are slow compared to the channel width, the foreground cleaning method still works.
    Preview · Article · Jul 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents the Planck 2015 likelihoods, statistical descriptions of the 2-point correlation functions of CMB temperature and polarization. They use the hybrid approach employed previously: pixel-based at low multipoles, $\ell$, and a Gaussian approximation to the distribution of cross-power spectra at higher $\ell$. The main improvements are the use of more and better processed data and of Planck polarization data, and more detailed foreground and instrumental models. More than doubling the data allows further checks and enhanced immunity to systematics. Progress in foreground modelling enables a larger sky fraction, contributing to enhanced precision. Improvements in processing and instrumental models further reduce uncertainties. Extensive tests establish robustness and accuracy, from temperature, from polarization, and from their combination, and show that the {\Lambda}CDM model continues to offer a very good fit. We further validate the likelihood against specific extensions to this baseline, such as the effective number of neutrino species. For this first detailed analysis of Planck polarization, we concentrate at high $\ell$ on E modes. At low $\ell$ we use temperature at all Planck frequencies along with a subset of polarization. These data take advantage of Planck's wide frequency range to improve the separation of CMB and foregrounds. Within the baseline cosmology this requires a reionization optical depth $\tau=0.078\pm0.019$, significantly lower than without high-frequency data for explicit dust monitoring. At high $\ell$ we detect residual errors in E, typically at the {\mu}K$^2$ level; we thus recommend temperature alone as the high-$\ell$ baseline. Nevertheless, Planck high-$\ell$ polarization spectra are already good enough to allow a separate high-accuracy determination of the {\Lambda}CDM parameters, consistent with those established from temperature alone.
    Full-text · Article · Jul 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The quest for a $B$-mode imprint from primordial gravity waves on the polarization of the cosmic microwave background (CMB) requires the characterization of foreground polarization from Galactic dust. We present a statistical study of the filamentary structure of the $353\,$GHz Planck Stokes maps at high Galactic latitude, relevant to the study of dust emission as a polarized foreground to the CMB. We filter the intensity and polarization maps to isolate filaments in the range of angular scales where the power asymmetry between $E$-modes and $B$-modes is observed. Using the Smoothed Hessian Major Axis Filament Finder, we identify 259 filaments at high Galactic latitude, with lengths larger or equal to $2$\deg\ (corresponding to $3.5\,$pc in length for a typical distance of $100\,$pc). These filaments show a preferred orientation parallel to the magnetic field projected onto the plane of the sky, derived from their polarization angles. We present mean maps of the filaments in Stokes $I$, $Q$, $U$, $E$, and $B$, computed by stacking individual images rotated to align the orientations of the filaments. Combining the stacked images and the histogram of relative orientations, we estimate the mean polarization fraction of the filaments to be $11\,$%. Furthermore, we show that the correlation between the filaments and the magnetic field orientations may account for the $E$ and $B$ asymmetry and the $C_{\ell}^{TE}/C_{\ell}^{EE}$ ratio, reported in the power spectra analysis of the Planck $353\,$GHz polarization maps. Future models of the dust foreground for CMB polarization studies will need to take into account the observed correlation between the dust polarization and the structure of interstellar matter.
    Full-text · Article · May 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the results of approximately three years of observations of Planck Sunyaev-Zeldovich (SZ) sources with telescopes at the Canary Islands observatories, as part of the general optical follow-up programme undertaken by the Planck collaboration. In total, 78 SZ sources are discussed. Deep imaging observations were obtained for most of those sources; spectroscopic observations in either in long-slit or multi-object modes were obtained for many. We found optical counterparts for 73 of the 78 candidates. This sample includes 53 spectroscopic redshifts determinations, 20 of them obtained with a multi-object spectroscopic mode. The sample contains new redshifts for 27 Planck clusters that were not included in the first Planck SZ source catalogue (PSZ1).
    Full-text · Article · Apr 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: QUIJOTE (Q-U-I JOint TEnerife) is a new polarimeter aimed to characterize the polarization of the Cosmic Microwave Background and other Galactic and extragalactic signals at medium and large angular scales in the frequency range 10-40 GHz. The multi-frequency (10-20~GHz) instrument, mounted on the first QUIJOTE telescope, saw first light on November 2012 from the Teide Observatory (2400~m a.s.l). During 2014 the second telescope has been installed at this observatory. A second instrument at 30~GHz will be ready for commissioning at this telescope during summer 2015, and a third additional instrument at 40~GHz is now being developed. These instruments will have nominal sensitivities to detect the B-mode polarization due to the primordial gravitational-wave component if the tensor-to-scalar ratio is larger than r=0.05.
    Full-text · Article · Apr 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: By looking at the kinetic Sunyaev-Zeldovich effect (kSZ) in Planck nominal mission data, we present a significant detection of baryons participating in large-scale bulk flows around central galaxies (CGs) at redshift $z\approx 0.1$. We estimate the pairwise momentum of the kSZ temperature fluctuations at the positions of the CGC (Central Galaxy Catalogue) samples extracted from Sloan Digital Sky Survey (DR7) data. For the foreground-cleaned maps, we find $1.8$-$2.5\sigma$ detections of the kSZ signal, which are consistent with the kSZ evidence found in individual Planck raw frequency maps, although lower than found in the WMAP-9yr W band ($3.3\sigma$). We further reconstruct the peculiar velocity field from the CG density field, and compute for the first time the cross-correlation function between kSZ temperature fluctuations and estimates of CG radial peculiar velocities. This correlation function yields a $3.0$-$3.7$$\sigma$ detection of the peculiar motion of extended gas on Mpc scales, in flows correlated up to distances of 80-100 $h^{-1}$ Mpc. Both the pairwise momentum estimates and kSZ temperature-velocity field correlation find evidence for kSZ signatures out to apertures of 8 arcmin and beyond, corresponding to a physical radius of $> 1$ Mpc, more than twice the mean virial radius of halos. This is consistent with the predictions from hydro simulations that most of the baryons are outside the virialized halos. We fit a simple model, in which the temperature-velocity cross-correlation is proportional to the signal seen in a semi-analytic model built upon N-body simulations, and interpret the proportionality constant as an "effective" optical depth to Thomson scattering. We find $\tau_T=(1.4\pm0.5)\times 10^{-4}$; the simplest interpretation of this measurement is that much of the gas is in a diffuse phase, which contributes little signal to X-ray or thermal SZ observations.
    Full-text · Article · Apr 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have constructed all-sky y-maps of the thermal Sunyaev-Zeldovich (tSZ) effect by applying specifically tailored component separation algorithms to the 30 to 857 GHz frequency channel maps from the Planck satellite survey. These reconstructed y-maps are delivered as part of the Planck 2015 release. The y-maps are characterised in terms of noise properties and residual foreground contamination, mainly thermal dust emission at large angular scales and CIB and extragalactic point sources at small angular scales. Specific masks are defined to minimize foreground residuals and systematics. Using these masks we compute the y-map angular power spectrum and higher order statistics. From these we conclude that the y-map is dominated by tSZ signal in the multipole range, 20-600. We compare the measured tSZ power spectrum and higher order statistics to various physically motivated models and discuss the implications of our results in terms of cluster physics and cosmology.
    Full-text · Article · Feb 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the results of a joint analysis of data from BICEP2/Keck Array and Planck. BICEP2 and Keck Array have observed the same approximately 400 deg$^2$ patch of sky centered on RA 0h, Dec. $-57.5\deg$. The combined maps reach a depth of 57 nK deg in Stokes $Q$ and $U$ in a band centered at 150 GHz. Planck has observed the full sky in polarization at seven frequencies from 30 to 353 GHz, but much less deeply in any given region (1.2 $\mu$K deg in $Q$ and $U$ at 143 GHz). We detect 150$\times$353 cross-correlation in $B$-modes at high significance. We fit the single- and cross-frequency power spectra at frequencies above 150 GHz to a lensed-$\Lambda$CDM model that includes dust and a possible contribution from inflationary gravitational waves (as parameterized by the tensor-to-scalar ratio $r$). We probe various model variations and extensions, including adding a synchrotron component in combination with lower frequency data, and find that these make little difference to the $r$ constraint. Finally we present an alternative analysis which is similar to a map-based cleaning of the dust contribution, and show that this gives similar constraints. The final result is expressed as a likelihood curve for $r$, and yields an upper limit $r_{0.05}<0.12$ at 95% confidence. Marginalizing over dust and $r$, lensing $B$-modes are detected at $7.0\,\sigma$ significance.
    Full-text · Article · Feb 2015 · Physical Review Letters
  • Source

    Full-text · Article · Feb 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Planck has mapped the polarized dust emission over the whole sky, making it possible to trace the Galactic magnetic field structure that pervades the interstellar medium (ISM). We combine polarization data from Planck with rotation measure (RM) observations towards a massive star-forming region, the Rosette Nebula in the Monoceros molecular cloud, to study its magnetic field structure and the impact of an expanding HII region on the morphology of the field. We derive an analytical solution for the magnetic field, assumed to evolve from an initially uniform configuration following the expansion of ionized gas and the formation of a shell of swept-up ISM. From the RM data we estimate a mean value of the line-of-sight component of the magnetic field of about +3 microG in the Rosette nebula, for a uniform electron density of about 11cm-3. The dust shell that surrounds the Rosette HII region is clearly observed in the Planck intensity map at 353 GHz. The Planck observations constrain the plane-of-the-sky orientation of the magnetic field in the region to be mostly aligned with the large-scale field along the Galactic plane. The data are compared with the analytical model, which predicts the mean polarization properties of a spherical and uniform dust shell for a given orientation of the field. This comparison leads to an upper limit of about 45deg on the angle between the line of sight and the magnetic field in the Rosette complex, for an assumed intrinsic dust polarization fraction of 4%. This field direction can reproduce the RM values detected in the ionized region if the magnetic field strength in the Monoceros molecular cloud is in the range 9-12.5 microG. The present analytical model is able to reproduce the RM distribution across the ionized nebula, as well as the mean dust polarization properties of the swept-up shell, and can be directly applied to other similar objects.
    Full-text · Article · Jan 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: 15 pages, 14 figures, submitted to A&A - See paper for full list of authors
    Full-text · Article · Jan 2015

Publication Stats

8k Citations
570.94 Total Impact Points

Institutions

  • 2007-2015
    • The University of Manchester
      • • Jodrell Bank Centre for Astrophysics
      • • School of Physics and Astronomy
      Manchester, England, United Kingdom
  • 2002-2007
    • Cardiff University
      • School of Physics and Astronomy
      Cardiff, Wales, United Kingdom
  • 2002-2005
    • University of Wales
      • Department of Physics
      Cardiff, Wales, United Kingdom
  • 2004
    • Université Paris-Sud 11
      Orsay, Île-de-France, France
  • 1998-2001
    • Queen Mary, University of London
      Londinium, England, United Kingdom
  • 1994
    • Institut d'Astrophysique Spatiale
      Lutetia Parisorum, Île-de-France, France