Yinghai Cui

Liaoning Universtity of Traditional Chinese Medicine, Feng-t’ien, Liaoning, China

Are you Yinghai Cui?

Claim your profile

Publications (2)5.74 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to explore the effect and mechanism of H. cordata vapor extract on acute lung injury (ALI) and rapid pulmonary fibrosis (RPF). We applied the volatile extract of HC to an RPF rat model and analyzed the effect on ALI and RPF using hematoxylin-eosin (H&E) staining, routine blood tests, a cell count of bronchoalveolar lavage fluid (BALF), lactate dehydrogenase (LDH) content, van Gieson (VG) staining, hydroxyproline (Hyp) content and the dry/wet weight ratio. The expression of IFN-γ/STAT(1), IL-4/STAT(6) and TGF-β(1)/Smads was analyzed using ELISA, immunohistochemistry and western blotting methods. The active ingredients of the HC vapor extract were analyzed using a gas chromatograph-mass spectrometer (GC-MS), and the effects of the active ingredients of HC on the viability of NIH/3T3 and RAW264.7 cells were detected using an MTT assay. The active ingredients of the HC vapor extract included 4-terpineol, α-terpineol, l-bornyl acetate and methyl-n-nonyl ketone. The results of the lung H&E staining, Hyp content, dry/wet weight ratio and VG staining suggested that the HC vapor extract repaired lung injury and reduced RPF in a dose-dependent manner and up-regulated IFN-γ and inhibited the TGF-β1/Smad pathway in vivo. In vitro, it could inhibit the viability of RAW264.7 and NIH/3T3 cells. It also dose-dependently inhibited the expression of TGF-β1 and enhanced the expression of IFN-γ in NIH/3T3. The HC vapor extract inhibited LPS-induced RPF by up-regulating IFN-γ and inhibiting the TGF-β1/Smad pathway.
    No preview · Article · May 2012 · International immunopharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Based on the common characteristic of severe acute respiratory syndrome (SARS) and highly pathogenic avian influenza and the mechanism of inflammation and fibrosis, it is speculated that there should exist a fundamental pathological rule that severe acute lung injury (ALI)-induced rapid pulmonary fibrosis is caused by various etiological factors, such as SARS coronavirus, H5N1-virus, or other unknown factors, and also by lipopolysaccharide (LPS), the most common etiological factor. The investigation employed intratracheally, and intraperitoneally and intratracheally applied LPS three-hit regimen, compared with bleomycin-induced chronic pulmonary fibrosis. Inflammatory damage and fibrosis were evaluated, and the molecular mechanism was analyzed according to Th1/Th2 balance, Sma- and MAD-related proteins (Smads) and signal transducer and activator of transcriptions (STATs) expression. The results suggested that rapid pulmonary fibrosis could be induced by ALI via LPS three-hits. The period from 3-7 days in the LPS group was the first rapid pulmonary fibrosis stage, whereas the second fast fibrosis stage occurred on days 14-21. Th2 cell polarization, Smad4 and Smad7 should be the crucial molecular mechanism of ALI-induced rapid fibrosis. The investigation was not only performed to establish a new rapid pulmonary fibrosis model, but also to provide the elicitation for mechanism of ALI changed into the rapid pulmonary fibrosis.
    No preview · Article · Jul 2009 · Innate Immunity

Publication Stats

23 Citations
5.74 Total Impact Points


  • 2012
    • Liaoning Universtity of Traditional Chinese Medicine
      Feng-t’ien, Liaoning, China
  • 2009
    • Guangzhou University of Chinese Medicine
      Shengcheng, Guangdong, China