T M Gilmer

National Institutes of Health, Maryland, United States

Are you T M Gilmer?

Claim your profile

Publications (79)

  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Although BRAF and MEK inhibitors have proven clinical benefits in melanoma, most patients develop resistance. We report a de novo MEK2-Q60P mutation and BRAF gain in a melanoma from a patient who progressed on the MEK inhibitor trametinib and did not respond to the BRAF inhibitor dabrafenib. We also identified the same MEK2-Q60P mutation along with BRAF amplification in a xenograft tumor derived from a second melanoma patient resistant to the combination of dabrafenib and trametinib. Melanoma cells chronically exposed to trametinib acquired concurrent MEK2-Q60P mutation and BRAF-V600E amplification, which conferred resistance to MEK and BRAF inhibitors. The resistant cells had sustained MAPK activation and persistent phosphorylation of S6K. A triple combination of dabrafenib, trametinib, and the PI3K/mTOR inhibitor GSK2126458 led to sustained tumor growth inhibition. Hence, concurrent genetic events that sustain MAPK signaling can underlie resistance to both BRAF and MEK inhibitors, requiring novel therapeutic strategies to overcome it.
    Full-text Article · Sep 2013 · Cell Reports
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: CONSORT Checklist. (DOC)
    Full-text Dataset · Mar 2013
  • Source
    Dataset: Protocol S1
    [Show abstract] [Hide abstract] ABSTRACT: Trial Protocol. (PDF)
    Full-text Dataset · Mar 2013
  • Source
    Dataset: File S1
    [Show abstract] [Hide abstract] ABSTRACT: This file contains: Table S1. Drug-related modulation of median plasma HGF, sVEGFR2, sMET and VEGF-A concentrations observed over the first dosing interval in the intermittent 5/9 dosing group. Figure S1. Foretinib inhibits gastric tumor xenograft growth and MET activation in mice xenografts. (A) Mice bearing MKN-45 gastric tumors (n = 10 per group) were treated with vehicle alone (black circles) or foretinib once per day (qd; green arrow) for 21 days at 6 mg/kg (green triangles) or 10 mg/kg (green diamonds), or with 30 mg/kg every other day (q2d; blue arrow) for 42 days (blue circles), or left untreated (black squares). Values represent mean ± SEM of tumor volume obtained from caliper measurements at the indicated days. The log-rank test results were significant (P<0.001) for foretinib at all groups when compared with vehicle control. (B) Mice with MKN-45 tumors measuring 200 to 300 mm3 in size received vehicle, foretinib or pazopanib orally once daily for 3 days at the doses indicated. Tumors were collected at the time points indicated (n = 3 per time point) after last dosing, and phospho-MET (pMET) and total MET (MET) were analyzed by immunoblotting; representative tumor samples are shown. (C) pMET/MET ratios (mean +/− SEM) obtained by quantitative (LI-COR) imaging of tumor samples described in panel B. Filled bars, 4 hours post-dose; clear bars, 24 hours post-dose. Asterisks indicate P<0.01 when compared with vehicle control. (D) Two-site electrochemiluminescent immunoassay analysis of pMET/MET ratio (mean +/− SEM) for tumor samples obtained from animals treated with foretinib 30 mg/kg (black squares) or vehicle (black circles) at the indicated times after dosing. Plasma foretinib concentrations (mean +/− SEM; red triangles) were obtained over the same time course. Figure S2A. Duration of stable disease in the evaluable population (all subjects with best response that was not progressive disease). Figure S2B. Overall survival in the evaluable population. Figure S3. Relationship between trough concentrations on (A) day 5 for the intermittent dosing cohort and percentage change in the sum of the longest diameters (pchange), and on (B) day 15 for the daily dosing cohort and percentage change in the sum of the longest diameters (pchange). (PDF)
    Full-text Dataset · Mar 2013
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Trial Laboratory Manual. (PDF)
    Full-text Dataset · Mar 2013
  • Source
    Dataset: Appendix S1
    [Show abstract] [Hide abstract] ABSTRACT: These are the study sites and the approving ethical review boards for participating sites. (DOCX)
    Full-text Dataset · Mar 2013
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The receptors for hepatocyte and vascular endothelial cell growth factors (MET and VEGFR2, respectively) are critical oncogenic mediators in gastric adenocarcinoma. The purpose is to examine the safety and efficacy of foretinib, an oral multikinase inhibitor targeting MET, RON, AXL, TIE-2, and VEGFR2 receptors, for the treatment of metastatic gastric adenocarcinoma. Foretinib safety and tolerability, and objective response rate (ORR) were evaluated in patients using intermittent (240 mg/day, for 5 days every 2 weeks) or daily (80 mg/day) dosing schedules. Thirty evaluable patients were required to achieve alpha = 0.10 and beta = 0.2 to test the alternative hypothesis that single-agent foretinib would result in an ORR of ≥25%. Up to 10 additional patients could be enrolled to ensure at least eight with MET amplification. Correlative studies included tumor MET amplification, MET signaling, pharmacokinetics and plasma biomarkers of foretinib activity. From March 2007 until October 2009, 74 patients were enrolled; 74% male; median age, 61 years (range, 25-88); 93% had received prior therapy. Best response was stable disease (SD) in 10 (23%) patients receiving intermittent dosing and five (20%) receiving daily dosing; SD duration was 1.9-7.2 months (median 3.2 months). Of 67 patients with tumor samples, 3 had MET amplification, one of whom had SD. Treatment-related adverse events occurred in 91% of patients. Rates of hypertension (35% vs. 15%) and elevated aspartate aminotransferase (23% vs. 8%) were higher with intermittent dosing. In both patients with high baseline tumor phospho-MET (pMET), the pMET:total MET protein ratio decreased with foretinib treatment. These results indicate that few gastric carcinomas are driven solely by MET and VEGFR2, and underscore the diverse molecular oncogenesis of this disease. Despite evidence of MET inhibition by foretinib, single-agent foretinib lacked efficacy in unselected patients with metastatic gastric cancer. ClinicalTrials.gov NCT00725712.
    Full-text Article · Mar 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Mutations of the oncogene KRAS are important drivers of pancreatic cancer progression. Activation of epidermal growth factor receptor (EGFR) and human EGFR2 (HER2) is observed frequent in pancreatic adenocarcinomas. Because of co-activation of these two signaling pathways, we assessed the efficacy of inhibition of EGFR/HER2 receptors and the downstream KRAS effector, mitogen-activated protein kinase/extracellular-signal regulated kinase (ERK) kinase 1 and 2 (MEK1/2), on pancreatic cancer proliferation in vitro and in a murine orthotopic xenograft model. Treatment of established and patient-derived pancreatic cancer cell lines with the MEK1/2 inhibitor trametinib (GSK1120212) inhibited proliferation, and addition of the EGFR/HER2 inhibitor lapatinib enhanced the inhibition elicited by trametinib in three of eight cell lines. Importantly, in the orthotopic xenograft model, treatment with lapatinib and trametinib resulted in significantly enhanced inhibition of tumor growth relative to trametinib treatment alone in four of five patient-derived tumors tested and was, in all cases, significantly more effective in reducing the size of established tumors than treatment with lapatinib or trametinib alone. Acute treatment of established tumors with trametinib resulted in an increase in AKT2 phosphorylation that was blunted in mice treated with both trametinib and lapatinib. These data indicate that inhibition of the EGFR family receptor signaling may contribute to the effectiveness of MEK1/2 inhibition of tumor growth possibly through the inhibition of feedback activation of receptor tyrosine kinases in response to inhibition of the RAS-RAF-MEK-ERK pathway. These studies provide a rationale for assessing the co-inhibition of these pathways in the treatment of pancreatic cancer patients.
    Full-text Article · Feb 2013 · Neoplasia (New York, N.Y.)
  • James G. Greger · Stephen D. Eastman · Hong Shi · [...] · Tona M. Gilmer
    Article · Jun 2012 · Cancer Research
  • James G Greger · Stephen D Eastman · Vivian Zhang · [...] · Tona M Gilmer
    [Show abstract] [Hide abstract] ABSTRACT: Recent results from clinical trials with the BRAF inhibitors GSK2118436 (dabrafenib) and PLX4032 (vemurafenib) have shown encouraging response rates; however, the duration of response has been limited. To identify determinants of acquired resistance to GSK2118436 and strategies to overcome the resistance, we isolated GSK2118436 drug-resistant clones from the A375 BRAF(V600E) and the YUSIT1 BRAF(V600K) melanoma cell lines. These clones also showed reduced sensitivity to the allosteric mitogen-activated protein/extracellular signal-regulated kinase (MEK) inhibitor GSK1120212 (trametinib). Genetic characterization of these clones identified an in-frame deletion in MEK1 (MEK1(K59del)) or NRAS mutation (NRAS(Q61K) and/or NRAS(A146T)) with and without MEK1(P387S) in the BRAF(V600E) background and NRAS(Q61K) in the BRAF(V600K) background. Stable knockdown of NRAS with short hairpin RNA partially restored GSK2118436 sensitivity in mutant NRAS clones, whereas expression of NRAS(Q61K) or NRAS(A146T) in the A375 parental cells decreased sensitivity to GSK2118436. Similarly, expression of MEK1(K59del), but not MEK1(P387S), decreased sensitivity of A375 cells to GSK2118436. The combination of GSK2118436 and GSK1120212 effectively inhibited cell growth, decreased ERK phosphorylation, decreased cyclin D1 protein, and increased p27(kip1) protein in the resistant clones. Moreover, the combination of GSK2118436 or GSK1120212 with the phosphoinositide 3-kinase/mTOR inhibitor GSK2126458 enhanced cell growth inhibition and decreased S6 ribosomal protein phosphorylation in these clones. Our results show that NRAS and/or MEK mutations contribute to BRAF inhibitor resistance in vitro, and the combination of GSK2118436 and GSK1120212 overcomes this resistance. In addition, these resistant clones respond to the combination of GSK2126458 with GSK2118436 or GSK1120212. Clinical trials are ongoing or planned to test these combinations.
    Article · Mar 2012 · Molecular Cancer Therapeutics
  • J. G. Greger · S. D. Eastman · V. Zhang · [...] · T. M. Gilmer
    Article · Nov 2011 · Molecular Cancer Therapeutics
  • Tona M Gilmer
    Article · Nov 2011 · Molecular Cancer Therapeutics
  • David Rusnak · Tona M Gilmer
    Article · Nov 2011 · Molecular Cancer Therapeutics
  • Li Liu · Shi Hong · Vivian Zhang · Tona Gilmer
    Article · Jul 2011 · Cancer Research
  • Article · Apr 2011 · Cancer Research
  • Li Liu · Hong Shi · Yuan Liu · [...] · Tona M Gilmer
    [Show abstract] [Hide abstract] ABSTRACT: The HER and MET receptor tyrosine kinases (RTK) are coactivated in a subset of human tumors. This study characterizes MET and HER expression and signaling in a panel of human tumor cell lines and the differential susceptibility of these cell lines to single agents or combinations of foretinib, a multikinase MET inhibitor, with HER-targeted agents, erlotinib or lapatinib. Most MET-amplified tumor lines without HER1 or HER2 amplification are sensitive to foretinib, whereas MET-amplified lines with HER1 or HER2 amplification are more sensitive to the combination of foretinib with lapatinib or erlotinib. Interestingly, MET-overexpressing tumor cell lines with HER1 or HER2 amplification also exhibited reduced sensitivity to lapatinib or erlotinib in the presence of hepatocyte growth factor (HGF), indicating MET activation can decrease the effectiveness of HER1/2 inhibitors in some cell lines. Consistent with this observation, the effect of HGF on lapatinib or erlotinib sensitivity in these cells was reversed by foretinib, other MET inhibitors, or siRNA to MET. Western blot analyses showed that combining foretinib with erlotinib or lapatinib effectively decreased the phosphorylation of MET, HER1, HER2, HER3, AKT, and ERK in these cells. Furthermore, HER2-positive advanced or metastatic breast cancer patients treated with lapatinib who had higher tumor MET expression showed shorter progression-free survival (19.29 weeks in MET-high patients vs. 28.14 weeks in MET-low patients, P < 0.0225). These data suggest that combination therapy with foretinib and HER-targeted agents should be tested as a treatment option for HER1- or HER2-positive patients with MET-amplified or -overexpressing tumors.
    Article · Mar 2011 · Molecular Cancer Therapeutics
  • James G. Greger · Hong Shi · Li Liu · Tona M. Gilmer
    Article · Jan 2011 · Cancer Research
  • Article · Apr 2010 · Cancer Research
  • Li Liu · James Greger · Hong Shi · [...] · Tona M Gilmer
    [Show abstract] [Hide abstract] ABSTRACT: HER2-directed therapies, such as trastuzumab and lapatinib, are important treatments for breast cancer. However, some tumors do not respond or develop resistance to these agents. We isolated and characterized multiple lapatinib-resistant, HER2-positive, estrogen receptor (ER)-positive breast cancer clones derived from lapatinib-sensitive BT474 cells by chronic exposure to lapatinib. We show overexpression of AXL as a novel mechanism of acquired resistance to HER2-targeted agents in these models. GSK1363089 (foretinib), a multikinase inhibitor of AXL, MET, and vascular endothelial growth factor receptor currently in phase II clinical trials, restores lapatinib and trastuzumab sensitivity in these resistant cells that exhibit increased AXL expression. Furthermore, small interfering RNA to AXL, estrogen deprivation, or fulvestrant, an ER antagonist, decreases AXL expression and restores sensitivity to lapatinib in these cells. Taken together, these data provide scientific evidence to assess the expression of AXL in HER2-positive, ER-positive patients who have progressed on either lapatinib or trastuzumab and to test the combination of HER2-targeted agents and GSK1363089 in the clinic.
    Article · Sep 2009 · Cancer Research
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Lapatinib, a selective orally available inhibitor of epidermal growth factor receptor (EGFR) and ErbB2 receptor tyrosine kinases, is a promising agent for the treatment of breast cancer. We examined the effect of lapatinib on the development of mammary tumors in MMTV-erbB2 transgenic mice, which express wild-type ErbB2 under the control of the mouse mammary tumor virus promoter and spontaneously develop estrogen receptor (ER)-negative and ErbB2-positive mammary tumors by 14 months of age. Mice were treated from age 3 months to age 15 months with vehicle (n = 17) or lapatinib (30 or 75 mg/kg body weight; n = 16 mice per group) by oral gavage twice daily (6 d/wk). All statistical tests were two-sided. By 328 days after the start of treatment, all 17 (100%) of the vehicle-treated mice vs five (31%) of the 16 mice treated with high-dose lapatinib developed mammary tumors (P < .001). Among MMTV-erbB2 mice treated for 5 months (n = 20 mice per group), those treated with lapatinib had fewer premalignant lesions and noninvasive cancers in their mammary glands than those treated with vehicle (P = .02). Lapatinib also effectively blocked epidermal growth factor-induced signaling through the EGFR and ErbB2 receptors, suppressed cyclin D1 and epiregulin mRNA expression, and stimulated p27 mRNA expression in human mammary epithelial cells and in mammary epithelial cells from mice treated for 5 months with high-dose lapatinib. Thus, cyclin D1, epiregulin, and p27 may represent useful biomarkers of lapatinib response in patients. These data suggest that lapatinib is a promising agent for the prevention of ER-negative breast cancer.
    Full-text Article · Jan 2009 · Journal of the National Cancer Institute