Robert Joodi

Emory University, Atlanta, Georgia, United States

Are you Robert Joodi?

Claim your profile

Publications (4)12.42 Total impact

  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Pluripotent stem cells represent one promising source for cell replacement therapy in heart, but differentiating embryonic stem cell-derived cardiomyocytes (ESC-CMs) are highly heterogeneous and show a variety of maturation states. In this study, we employed an ESC clonal line that contains a cardiac-restricted ncx1 promoter-driven puromycin resistance cassette together with a mass culture system to isolate ESC-CMs that display traits characteristic of very immature CMs. The cells display properties of proliferation, CM-restricted markers, reduced mitochondrial mass, and hypoxia-resistance. Following transplantation into rodent hearts, bioluminescence imaging revealed that immature cells, but not more mature CMs, survived for at least one month following injection. These data and comparisons with more mature cells lead us to conclude that immature hypoxia resistant ESC-CMs can be isolated in mass in vitro and, following injection into heart, form grafts that may mediate long-term recovery of global and regional myocardial contractile function following infarction.
    Full-text · Article · Sep 2011
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Long-term success in lung transplantation is limited by obliterative bronchiolitis (OB). Presently, complete understanding of the mechanisms of OB has been elusive. Bone marrow-derived mesenchymal stem cells (MSC) have been shown to modulate repair of the injured lung in multiple disease models. We hypothesized that the injection of MSC would prevent development of early airway obstruction (AO) in the heterotopic tracheal transplant model. Forty-four tracheas from BALB/c and C57BL/6 donors were transplanted into 22 C57BL/6 recipients. At the time of transplant, 13 of the allogeneic recipient mice were injected with 5 × 10(5) MSC from various murine sources. To confirm the role of the immune response in the generation of AO we used a permeable inhibitor of nuclear factor-kappaB (NF-κB) in 11 recipients after transplantation with 22 BALB/c tracheas. After transplantation, administration of MSC inhibited intraluminal obstruction by collagen in 98% of the mice and transforming factor-beta (TGF-β) expression decreased to levels similar to those observed in isograft controls. These effects were associated with a significant (p < 0.05) increase in expression of the anti-inflammatory cytokine interleukin-10 (IL-10). NF-κB inhibitor showed decreased expression of transforming growth factor-beta (TGF-β) in the Day 7 and Day 14 groups, resulting in a 60% reduction of luminal obstruction as well as a decrease in inflammatory cells to the airway. Our observations suggest that administration of MSC prevents development of airway occlusion in a mouse model, probably through the modulated immune response altering TGF-β expression.
    Full-text · Article · Mar 2011 · The Journal of heart and lung transplantation: the official publication of the International Society for Heart Transplantation
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Bone marrow-derived mesenchymal stem cells (BMDMSCs) appear to be important in repair of the chronic lung injury caused by bleomycin in mice. To determine effects of these BMDMSCs on an acute inflammatory response, we injected C57BL/6 mice intraperitoneally with 1 mg/kg endotoxin followed either by intravenous infusion of 5 x 10(5) BMDMSCs, the same number of lung fibroblasts, or an equal volume of normal saline solution. Lungs harvested 6, 24, and 48 h and 14 days after endotoxin showed that BMDMSC administration prevented endotoxin-induced lung inflammation, injury, and edema. Although we were able to detect donor cells in the lungs at 1 day after endotoxin, by 14 days no donor cells were detected. BMDMSC administration suppressed the endotoxin-induced increase in circulating proinflammatory cytokines without decreasing circulating levels of anti-inflammatory mediators. Ex vivo cocultures of BMDMSC and lung cells from endotoxemic animals demonstrated a bilateral conversation in which lung cells stimulated proliferation and migration of stem cells and suppressed proinflammatory cytokine production by lung cells. We conclude that BMDMSCs decrease both the systemic and local inflammatory responses induced by endotoxin. These effects do not require either lung engraftment or differentiation of the stem cells and are due at least in part to the production of stem cell chemoattractants by the lungs and to humoral and physical interactions between stem cells and lung cells. We speculate that mobilization of this population of BMDMSCs may be a general mechanism for modulating an acute inflammatory response.
    Full-text · Article · Aug 2007 · AJP Lung Cellular and Molecular Physiology
  • [Show abstract] [Hide abstract] ABSTRACT: An abstract is unavailable. This article is available as HTML full text and PDF.
    No preview · Article · Dec 2005 · Journal of Investigative Medicine