Peter Lee-Robichaud

Hampshire County Council, Winchester, England, United Kingdom

Are you Peter Lee-Robichaud?

Claim your profile

Publications (11)42.7 Total impact

  • Muhammad Akhtar · J Neville Wright · Peter Lee-Robichaud
    [Show abstract] [Hide abstract]
    ABSTRACT: In the conventional P-450 dependent hydroxylation reaction, the Fe(III) resting state of the enzyme, by a single electron transfer, is reduced to Fe(II), which reacts with O(2) to produce a Fe(III)-O-O intermediate. The latter following the transfer of another electron furnishes a ferric-peroxyanion, Fe(III)-O-O(-), which after protonation leads to the fission of the O-O bond resulting in the formation of Fe(V)O, the key player in the hydroxylation process. Certain members of the P-450 family, including CYP17 and CYP19, catalyze, at the same active site, not only the hydroxylation process but also an acyl-carbon bond cleavage reaction which has been interpreted to involve the nucleophilic attack of the ferric-peroxyanion, Fe(III)-O-O(-), on the acyl carbon to furnish a tetrahedral intermediate which fragments, leading to acyl-carbon cleavage. Evidence is presented to show that in the case of CYP17 the attack of Fe(III)-O-O(-) on the target carbon is promoted by cytochrome b(5), which acts as a conformational regulator of CYP17. It is this regulation of CYP17 that provides a safety mechanism which ensures that during corticoid biosynthesis, which involves 17α-hydroxylation by CYP17, androgen formation is avoided. Finally, a brief account is presented of the inhibitors, of the two enzymes, which have been designed on the basis of their mechanism of action. Article from the Special issue on 'Targeted Inhibitors'.
    No preview · Article · Nov 2010 · The Journal of steroid biochemistry and molecular biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: CYP17 (17alpha-hydroxylase-17,20-lyase; also P450c17 or P450(17alpha)) catalyses the17alpha-hydroxylation of progestogens and the subsequent acyl-carbon cleavage of the 17alpha-hydroxylated products (lyase activity) in the biosynthesis of androgens. The enzyme also catalyses another type of acyl-carbon cleavage (direct cleavage activity) in which the 17alpha-hydroxylation reaction is by-passed. Human CYP17 is heavily dependent on the presence of the membrane form of cytochrome b(5) for both its lyase and direct cleavage activities. In the present study it was found that substitution of human CYP17 amino acids, Arg(347), Arg(358) and Arg(449), with non-cationic residues, yielded variants that were impaired in the two acyl-carbon bond cleavage activities, quantitatively to the same extent and these were reduced to between 3 and 4% of the wild-type protein. When the arginines were replaced by lysines, the sensitivity to cytochrome b(5) was restored and the acyl-carbon cleavage activities were recovered. All of the human mutant CYP17 proteins displayed wild-type hydroxylase activity, in the absence of cytochrome b(5). The results suggest that the bifurcated cationic charges at Arg(347), Arg(358) and Arg(449) make important contributions to the formation of catalytically competent CYP17.cytochrome b(5) complex. The results support our original proposal that the main role of cytochrome b(5) is to promote protein conformational changes which allow the iron-peroxo anion to form a tetrahedral adduct that fragments to produce the acyl-carbon cleavage products.
    No preview · Article · Nov 2004 · The Journal of Steroid Biochemistry and Molecular Biology
  • Source
    Peter Lee-Robichaud · Monika E. Akhtar
    [Show abstract] [Hide abstract]
    ABSTRACT: Human CYP17 (17alpha-hydroxylase-17,20-lyase; also cytochrome P450c17 or cytochrome P450(17alpha)) catalyses a hydroxylation reaction and another reaction involving the cleavage of a C-C bond (the lyase activity) that is required only for androgen production. Single amino acid mutations in human CYP17, Arg(347)-->His and Arg(358)-->Gln, have been reported to result in the loss of the lyase activity and to cause sexual phenotypic changes in 46XY male patients. By using site-directed mutagenesis we show here that another mutation in human CYP17, Arg(449)-->Ala, for which human variants have yet not been described, also leads to selective lyase deficiency. Furthermore, all the three types of mutants display a loss of responsiveness to cytochrome b(5), an interaction that is essential for lyase activity, and hence male sex-hormone biosynthesis. That the defect could be essentially reversed by lysine mutagenesis has led to the conclusion that the cationic charges on all three residues (at the positions of Arg(347), Arg(358), Arg(449)) are vital for the functional interaction of CYP17 with cytochrome b(5) and that the loss of any one of these cationic charges is catastrophic.
    Preview · Article · Oct 1999 · Biochemical Journal
  • David F.V. Lewis · Peter Lee-Robichaud
    [Show abstract] [Hide abstract]
    ABSTRACT: The results of homology modelling of mammalian steroidogenic cytochromes P450 (CYP) from families CYP11, CYP17, CYP19 and CYP21 are reported, based on a novel protein sequence alignment with CYP102, a bacterial P450 of known crystal structure. The molecular models generated from the CYP102 crystal structure template are consistent with experimental information from site-directed mutagenesis studies, steroidal substrate specificity and active site inhibitor studies. Interactive docking studies with both substrates and inhibitors of these enzymes indicate key residue interactions with the putative active site regions of each isoform investigated, which point to potential determinants of substrate specificity within these related enzymes.
    No preview · Article · Sep 1998 · The Journal of Steroid Biochemistry and Molecular Biology
  • Source
    P Lee-Robichaud · J N Wright · M E Akhtar

    Preview · Article · Sep 1998 · Biochemical Society Transactions
  • Source
    Peter LEE-ROBICHAUD · Monika E. AKHTAR
    [Show abstract] [Hide abstract]
    ABSTRACT: The lyase activity of human CYP17 (17alpha-hydroxylase-17,20-lyase also P-450c17 or P-45017alpha) is greatly dependent on the presence of cytochrome b5, and this effect has been ascribed an important regulatory role [Lee-Robichaud, Wright, Akhtar and Akhtar (1995) Biochem. J. 308, 901-908]. This facet was further investigated by site-directed mutagenesis of selected basic residues of human CYP17. The purified mutant proteins were subjected to detailed kinetic analysis. It was found that the mutation of Lys83, Arg347 and Arg358 produced proteins that were deficient in their responsiveness to cytochrome b5, and the effect was most pronounced for the two arginine mutants (Arg347-->His and Arg358-->Gln) which have been found in male patients suffering from genital ambiguity. These residues are invoked to mediate protein-protein interaction between cytochrome b5 and CYP17, which 'awakens' the lyase activity of the enzyme required for androgen formation.
    Preview · Article · Jul 1998 · Biochemical Journal
  • Source
    Peter LEE-ROBICHAUD · M E Akhtar
    [Show abstract] [Hide abstract]
    ABSTRACT: Certain cytochrome P-450s involved in the transformation of steroids catalyse not only the hydroxylation process associated with the group of enzymes, but also an acyl-carbon cleavage reaction. The hydroxylation occurs using an iron-monooxygen species while the acyl-carbon cleavage has been suggested to be promoted by an iron peroxide. In this paper we have studied the role of active site protic residues, Glu305 and Thr306, in modulating the two activities. For this purpose, the kinetic parameters for the hydroxylation reaction (pregnenolone-->17alpha-hydroxypregnenolone) and two different versions of acyl-carbon cleavage (17alpha-hydroxypregnenolone-->dehydroepiandrosterone and 3beta-hydroxyandrost-5-ene-17beta-carbaldehyde-->3beta-hydroxya ndrost -5,16-diene+androst-5-ene-3beta,17alpha-diol) were determined using the wild-type human CYP17 and its eight different single and double mutants. In addition the propensity of the proteins to undergo a subtle rearrangement converting the 450 nm active-form into an inactive counterpart absorbing at 420 nm, was monitored by measuring the t12 of the P-450-->P-420 conversion. The results are interpreted to draw the following conclusions. The functional groups of Glu305 and Thr306 do not directly participate in the two proton delivery steps required for hydroxylation but may be important participants for the provision of a net work of hydrogen bonds for 'activating' water that then acts as a proton donor. The loss of any one of these residues is, therefore, only partially debilitating. That the mutation of Thr306 impairs the hydroxylation reaction more than it does the acyl-carbon cleavage is consistent with the detailed mechanistic scheme considered in this paper. Furthermore attention is drawn to the fact that the mutation of Glu305 and Thr306 subtly perturbed the architecture of the active site, which affects the geometry of this region of the protein and therefore its catalytic properties.
    Preview · Article · Apr 1998 · Biochemical Journal
  • P Lee-Robichaud · M.E. Akhtar · J N Wright
    [Show abstract] [Hide abstract]
    ABSTRACT: Experimental findings from a number of laboratories have converged to show that the conversion of androgens into oestrogen, catalysed by aromatase, involves three distinct reactions which occur at a single active site. That each one of these reactions belongs to a different generic type was revealed by chemical consideration, together with our (18)O-experiments. In particular, these findings highlighted the fact that the third reaction in the sequence occurs by a novel process for which a number of plausible mechanisms have been considered. The scrutiny of these mechanisms has involved either studies on aromatase itself, or on related enzymes which catalyse the aromatase type of cleavage reaction as generalized in equation 1: [equation: see text]. The acyl-carbon cleavage reaction of equation 1 is catalysed by sterol 14alpha-demethylases, accounts for several side-chain fission products formed by CYP17 (17alpha-hydroxylase-17,20-lyase), and constitutes a weak property of certain drug metabolizing P450s, when given aliphatic aldehydes as substrates. From cumulative studies on these enzymes, consensus is beginning to emerge that the acyl-carbon fission may be promoted by the FeIII-OOH intermediate, formed during the catalytic cycles of P450s. The precedent for the direct involvement of the FeIII-OOH species in the reaction of equation 1 is influencing our thinking regarding the mechanism of the conventional hydroxylation reaction. The status of knowledge surrounding the current debate on these issues will be reviewed.
    No preview · Article · May 1997 · The Journal of Steroid Biochemistry and Molecular Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Human CYP17 (P-450(17alpha), 17alpha-hydroxylase-17,20-lyase)-catalysed side-chain cleavage of 17alpha-hydroxyprogestogens into androgens is greatly dependent on the presence of cytochrome b5. The native form of cytochrome b5 is composed of a globular core, residues 1-98, followed by a membrane insertable C-terminal tail, residues 99-133. In the present study the abilities of five different forms of cytochrome b5 to support the side-chain cleavage activity of CYP17 were compared. The five derivatives were: the native pig cytochrome b5 (native pig), its genetically engineered rat counterpart (core-tail), the soluble core form of the latter (core), the core with the secretory signal sequence of alkaline phosphatase appended to its N-terminal (signal-core) and the latter containing the C-terminal tail of the native rat protein (signal-core-tail). When examined by Edman degradation and MS, the engineered proteins were shown to have the expected N-terminal amino acid sequences and molecular masses. The native pig was found to be acetylated at the N-terminal. The native pig and core-tail enzymes were equally efficient at enhancing the side-chain cleavage activity of human CYP17 and the signal-core-tail was 55% as efficient. The core and signal-core constructs were completely inactive in the aforementioned reaction. All the five derivatives were reduced to varying degrees by NADPH:cytochrome P-450 (NADPH-P450) reductase and the relative efficiencies of this reduction were reminiscent of the behaviour of these derivatives in supporting the side-chain cleavage reaction. In the side-chain cleavage assay, however, NADPH-P450 reductase was used in large excess so that the reduction of cytochrome b5 derivatives was not rate-limiting. The results highlight that productive interaction between cytochrome b5 and CYP17 is governed not only by the presence of a membrane insertable hydrophobic region on the cytochrome b5 but also by its defined spatial orientation at the C-terminal.
    Full-text · Article · Mar 1997 · Biochemical Journal
  • Peter Lee-Robichaud · Akbar Z. Shyadehi · J. Neville Wright · M E Akhtar
    [Show abstract] [Hide abstract]
    ABSTRACT: Using homogeneous pig and recombinant human CYP17, the mechanism of the acyl-carbon bond fission involved in the direct cleavage of pregnenolone was studied. It was found that the formation of androsta-5,16-dien-3 beta-ol (5,16-diene) and androst-5-ene-3 beta,17 alpha-diol (17 alpha-hydroxyandrogen) from pregnenolone was catalyzed by both the isoforms and that the two conversions were dependent on the presence of cytochrome b5 (cyt b5). 3 beta-Hydroxyandrost-5-ene-17 beta-carbaldehyde (aldehyde), an analogue of the physiological substrate pregnenolone, was handled as a substrate by both isoforms of CYP17. The aldehyde underwent cleavage to produce the 5,16-diene plus the 17 alpha-hydroxyandrogen, at rates approximately 8- and 3-fold higher than any physiological reaction catalyzed, in the absence of cytochrome b5, by the pig and human CYP17 isoforms, respectively. The stereochemistry of the reaction was studied using the aldehyde labeled with 2H at three strategic positions, 16 alpha, 16 beta, and 17 alpha, with incubations performed under both 16O2 and 18O2. The results showed that the formation of the 5,16-diene is attended by the removal of the 16 alpha-hydrogen atom; all three 2H atoms are retained in the formation of 17 alpha-hydroxyandrogen and its 17 alpha-hydroxyl oxygen originates from O2. Irrespective of the nature of the substrate, or the enzymic conditions used, the 5,16-diene and 17 alpha-hydroxyandrogen were produced in similar ratios, suggesting that their genesis is closely linked. Both the compounds may be envisaged to arise from a peroxy adduct that fragments to give a carbon radical that then undergoes either a disproportionation or an oxygen-rebound reaction. The conclusion was supported by isotope-partitioning experiments when the conversion of a mixture of the unlabeled aldehyde and its isotopomer, containing 2H at 16 alpha as well as 16 beta, led to the enrichment of 2H in 17 alpha-hydroxyandrogen. It is suggested that the mechanistic kinship between hydroxylation and olefin formation, revealed by the present study, also applies to conventional hydroxylation and desaturation reactions.
    No preview · Article · Nov 1995 · Biochemistry
  • Source
    P Lee-Robichaud · J N Wright · M E Akhtar
    [Show abstract] [Hide abstract]
    ABSTRACT: Using NADPH-cytochrome P-450 reductase as electron donor the homogeneous pig 17 alpha-hydroxylase-17,20-lyase (CYP17) was shown to catalyse the conversion of delta 5, as well as delta 4, steroids (pregnenolone and progesterone respectively) predominantly into the corresponding 17 alpha-hydroxylated products. The latter were then cleaved by the lyase (desmolase) activity of the enzyme into androgens. Cytochrome b5 stimulated both these activities, but its most noticeable effect was on the formation of delta 16-steroids, which compulsorily required the presence of cytochrome b5. These results on the pig enzyme confirm the original findings [Nakajin, Takahashi, Shinoda and Hall (1985) Biochem. Biophys. Res. Commun. 132, 708-713]. The human CYP17 expressed in Escherichia coli [Imai, Globerman, Gertner, Kagawa and Waterman (1993) J. Biol. Chem. 268, 19681-19689] was also purified to homogeneity and was found to catalyse the hydroxylation of pregnenolone and progesterone without requiring cytochrome b5. Like the pig CYP17, the human CYP17 also catalysed the cytochrome b5-dependent direct cleavage of pregnenolone into the delta 5,16-steroid, but unlike it the human enzyme did not cleave progesterone at all. 17 alpha-Hydroxypregnenolone was, however, cleaved into the corresponding androgen but only in the presence of cytochrome b5. 17 alpha-Hydroxyprogesterone was a poor substrate for the human CYP17; although it was converted into androstenedione in the presence of cytochrome b5 its K(m) was 5 times higher and Vmax. 2.6 times lower than those for the hydroxylation of progesterone. The endocrinological and mechanistic implications of these results are discussed.
    Preview · Article · Jul 1995 · Biochemical Journal

Publication Stats

424 Citations
42.70 Total Impact Points


  • 2010
    • Hampshire County Council
      Winchester, England, United Kingdom
  • 2004
    • The University of Sheffield
      • Department of Chemistry
      Sheffield, England, United Kingdom
  • 1995-1999
    • University of Southampton
      • Centre for Biological Sciences
      Southampton, England, United Kingdom