M C Zerrate

Johns Hopkins University, Baltimore, Maryland, United States

Are you M C Zerrate?

Claim your profile

Publications (2)10.33 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diffusion tensor imaging (DTI) studies have shown significant cross-sectional differences among normal controls (NC) mild cognitive impairment (MCI) and Alzheimer's disease (AD) patients in several fiber tracts in the brain, but longitudinal assessment is needed. We studied 75 participants (25 NC, 25 amnestic MCI, and 25 mild AD) at baseline and 3 months later, with both imaging and clinical evaluations. Fractional anisotropy (FA) was analyzed in regions of interest (ROIs) in: (1) fornix, (2) cingulum bundle, (3) splenium, and (4) cerebral peduncles. Clinical data included assessments of clinical severity and cognitive function. Cross-sectional and longitudinal differences in FA, within each ROI, were analyzed with generalized estimating equations (GEE). Cross-sectionally, AD patients had lower FA than NC (p<0.05) at baseline and 3 months in the fornix and anterior portion of the cingulum bundle. Compared to MCI, AD cases had lower FA (p<0.05) in these regions and the splenium at 0 and 3 months. Both the fornix and anterior cingulum correlated across all clinical cognitive scores; lower FA in these ROIs corresponded to worse performance. Over the course of 3 months, when the subjects were clinically stable, the ROIs were also largely stable. Using DTI, findings indicate FA is decreased in specific fiber tracts among groups of subjects that vary along the spectrum from normal to AD, and that this measure is stable over short periods of time. The fornix is a predominant outflow tract of the hippocampus and may be an important indicator of AD progression.
    Full-text · Article · Mar 2009 · NeuroImage
  • [Show abstract] [Hide abstract]
    ABSTRACT: Autism is a neurodevelopmental disorder presenting before 3 years of age with deficits in communication and social skills and repetitive behaviors. In addition to genetic influences, recent studies suggest that prenatal drug or chemical exposures are risk factors for autism. Terbutaline, a beta2-adrenoceptor agonist used to arrest preterm labor, has been associated with increased concordance for autism in dizygotic twins. We studied the effects of terbutaline on microglial activation in different brain regions and behavioral outcomes in developing rats. Newborn rats were given terbutaline (10 mg/kg) daily on postnatal days (PN) 2 to 5 or PN 11 to 14 and examined 24 h after the last dose and at PN 30. Immunohistochemical studies showed that administration of terbutaline on PN 2 to 5 produced a robust increase in microglial activation on PN 30 in the cerebral cortex, as well as in cerebellar and cerebrocortical white matter. None of these effects occurred in animals given terbutaline on PN 11 to 14. In behavioral tests, animals treated with terbutaline on PN 2 to 5 showed consistent patterns of hyper-reactivity to novelty and aversive stimuli when assessed in a novel open field, as well as in the acoustic startle response test. Our findings indicate that beta2-adrenoceptor overstimulation during an early critical period results in microglial activation associated with innate neuroinflammatory pathways and behavioral abnormalities, similar to those described in autism. This study provides a useful animal model for understanding the neuropathological processes underlying autism spectrum disorders.
    No preview · Article · Jul 2007 · Journal of Pharmacology and Experimental Therapeutics