Liangliang Xu

Chinese Academy of Sciences, Peping, Beijing, China

Are you Liangliang Xu?

Claim your profile

Publications (4)28.04 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Sorting nexin (SNX) family proteins are best characterized for their abilities to regulate protein trafficking during processes such as endocytosis of membrane receptors, endosomal sorting, and protein degradation, but their in vivo functions remain largely unknown. We started to investigate the biological functions of SNXs using the zebrafish model. In this study, we demonstrated that SNX7 was essential for embryonic liver development. Hepatoblasts were specified normally, and the proliferation of these cells was not affected when SNX7 was knocked down by gene-specific morpholinos; however, they underwent massive apoptosis during the early budding stage. SNX7 mainly regulated the survival of cells in the embryonic liver and did not affect the viability of cells in other endoderm-derived organs. We further demonstrated that down-regulation of SNX7 by short interfering RNAs induced apoptosis in cell culture. At the molecular level, the cellular FLICE-like inhibitory protein (c-FLIP)/caspase 8 pathway was activated when SNX7 was down-regulated. Furthermore, overexpression of c-FLIPS was able to rescue the SNX7 knockdown-induced liver defect. SNX7 is a liver-enriched antiapoptotic protein that is indispensable for the survival of hepatoblasts during zebrafish early embryogenesis. (HEPATOLOGY 2012;55:1985–1993)
    No preview · Article · Jun 2012 · Hepatology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background:Notch is one of the most important signaling pathways involved in cell fate determination. Activation of the Notch pathway requires the binding of a membrane-bound ligand to the Notch receptor in the adjacent cell which induces proteolytic cleavages and the activation of the receptor. A unique feature of the Notch signaling is that processes such as modification, endocytosis or recycling of the ligand have been reported to play critical roles during Notch signaling, however, the underlying molecular mechanism appears context-dependent and often controversial. Results:Here we identified SNX17 as a novel regulator of the Notch pathway. SNX17 is a sorting nexin family protein implicated in vesicular trafficking and we find it is specifically required in the ligand-expressing cells for Notch signaling. Mechanistically, SNX17 regulates the protein level of Jag1a on plasma membrane by binding to Jag1a and facilitating the retromer-dependent recycling of the ligand. In zebrafish, inhibition of this SNX17-mediated Notch signaling pathway results in defects in neurogenesis as well as pancreas development. Conclusions:Our results reveal that SNX17, by acting as a cargo-specific adaptor, promotes the retromer dependent recycling of Jag1a and Notch signaling and this pathway is involved in cell fate determination during zebrafish neurogenesis and pancreas development
    Full-text · Article · Jun 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Sorting nexins (SNXs) are phosphoinositide-binding proteins implicated in the sorting of various membrane proteins in vitro, but the in vivo functions of them remain largely unknown. We reported previously that SNX10 is a unique member of the SNX family genes in that it has vacuolation activity in cells. We investigate the biological function of SNX10 by loss-of-function assay in this study and demonstrate that SNX10 is required for the formation of primary cilia in cultured cells. In zebrafish, SNX10 is involved in ciliogenesis in the Kupffer's vesicle and essential for left-right patterning of visceral organs. Mechanistically, SNX10 interacts with V-ATPase complex and targets it to the centrosome where ciliogenesis is initiated. Like SNX10, V-ATPase regulates ciliogenesis in vitro and in vivo and does so synergistically with SNX10. We further discover that SNX10 and V-ATPase regulate the ciliary trafficking of Rab8a, which is a critical regulator of ciliary membrane extension. These results identify an SNX10/V-ATPase-regulated vesicular trafficking pathway that is crucial for ciliogenesis, and reveal that SNX10/V-ATPase, through the regulation of cilia formation in various organs, play an essential role during early embryonic development.
    Full-text · Article · Aug 2011 · Cell Research
  • Juan Zhang · Xiaofei Zhang · Yunqian Guo · Liangliang Xu · Duanqing Pei
    [Show abstract] [Hide abstract]
    ABSTRACT: Sorting nexin 33 (SNX33) is a novel member of the sorting nexin superfamily with three predicted structural domains, SH3-PX-BAR. Very little is known about the cellular function of SNX33. In an effort to analyze its structure/function relationship, we attempted but failed to generate stable cell lines for short hairpin RNA or overexpression SNX33. Transient knockdown of SNX33 induces both HeLa and MCF7 cells to grow multiple long processes, delay the G(1)/M transition, and become more apoptotic, implying that SNX33 may control cell cycle process through influence the cytoskeleton. In vitro cell lineage analysis revealed that cells transfected with SNX33 failed to divide and became micronucleated, suggesting a specific defect in cytokinesis. Further analysis revealed that SNX33 induced the accumulation of actin at the perinuclear space, which might have disabled the cytokinetic machinery. However, SNX33 appears to mediate actin polymerization indirectly, as they do not interact with each other. SNX33 interacts with itself and SNX9. Interestingly, it also interacts with VCA domain of Wiskott-Aldrich syndrome protein (WASp), a protein known to be involved in actin polymerization. Indeed, cells overexpressing WASp failed to divide and form stable colonies as SNX33, consistent with the notion that SNX33 may interfere with cytokinesis. On the other hand, knockdown of WASp alleviates the phenotype induced by SNX33. Taken together, our results suggest that SNX33 plays a role in maintaining cell shape and cell cycle progression through its interaction with WASp.
    No preview · Article · Jul 2009 · Journal of Biological Chemistry

Publication Stats

55 Citations
28.04 Total Impact Points


  • 2011-2012
    • Chinese Academy of Sciences
      • South China Institute for Stem Cell Biology and Regenerative Medicine
      Peping, Beijing, China
  • 2009-2012
    • Tsinghua University
      • School of Medicine
      Peping, Beijing, China