Jean-Louis Augueres

Cea Leti, Grenoble, Rhône-Alpes, France

Are you Jean-Louis Augueres?

Claim your profile

Publications (7)1 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: One of the main challenges for current and near future space experiments is the increase of focal plane complexity in terms of amount of pixels. In the frame work of the ESA Euclid mission to be launched in 2020, the Euclid Consortium is developing an extremely large and stable focal plane for the VIS instrument. CEA has developed the thermomechanical architecture of that Focal Plane taking into account all the very stringent performance and mission related requirements. The VIS Focal Plane Assembly integrates 36 CCDs (operated at 150K) connected to their front end electronics (operated at 280K) as to obtain one of the largest focal plane (∼0.6 billion pixels) ever built for space application after the GAIA one. The CCDs are CCD273 type specially designed and provided by the e2v company under ESA contract, front end electronics is studied and provided by MSSL. In this paper we first recall the specific requirements that have driven the overall architecture of the VIS-FPA and especially the solutions proposed to cope with the scientific needs of an extremely stable focal plane, both mechanically and thermally. The mechanical structure based on SiC material used for the cold sub assembly supporting the CCDs is detailed. We describe also the modular architecture concept that we have selected taking into account AIT-AIV and programmatic constraints.
    No preview · Conference Paper · Aug 2014
  • R Laureijs · J Amiaux · S Arduini · J ~- Auguères · J Brinchmann · R Cole · M Cropper · C Dabin · L Duvet · A Ealet · al

    No preview · Article · Oct 2011
  • [Show abstract] [Hide abstract]
    ABSTRACT: The NIP is a near infrared imaging photometer that is currently under investigation for the Euclid space mission in context of ESA's 2015 Cosmic Vision program. Together with the visible camera (VIS) it will form the basis of the weak lensing measurements for Euclid. The NIP channel will perform photometric imaging in 3 near infrared bands (Y, J, H) covering a wavelength range from ~ 0.9 to 2 μm over a field of view (FoV) of ~ 0.5 deg2. With the required limiting point source magnitude of 24 mAB (5 sigma) the NIP channel will be used to determine the photometric redshifts of over 2 billion galaxies collected over a wide survey area of 20 000 deg2. In addition to the photometric measurements, the NIP channel will deliver unique near infrared (NIR) imaging data over the entire extragalactic sky, enabling a wide variety of ancillary astrophysical and cosmological studies. In this paper we will present the results of the study carried out by the Euclid Imaging Consortium (EIC) during the Euclid assessment phase.
    No preview · Article · Jul 2010 · Proceedings of SPIE - The International Society for Optical Engineering
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Euclid Imaging Channels Instrument of the Euclid mission is designed to study the weak gravitational lensing cosmological probe. The combined Visible and Near Infrared imaging channels will be controlled by a common data handling unit (PDHU), implementing onboard the instrument digital interfaces to the satellite. The PDHU main functionalities include the scientific data acquisition and compression, the instrument commanding and control and the instrument health monitoring. Given the high data rate and the compression needs, an innovative architecture, based on the use of several computing and interface modules, considered as building blocks of a modular design will be presented.
    No preview · Article · Jan 2010 · Proceedings of SPIE - The International Society for Optical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The JWST Mid-Infrared Instrument (MIRI) is designed to meet the JWST science requirements for mid-IR capabilities and includes an Imager MIRIM provided by CEA (France). A double-prism assembly (DPA) allows MIRIM to perform low-resolution spectroscopy. The MIRIM DPA shall meet a number of challenging requirements in terms of optical and mechanical constraints, especially severe optical tolerances, limited envelope and very high vibration loads. The University of Cologne (Germany) and the Centre Spatial de Liege (Belgium) are responsible for design, manufacturing, integration, and testing of the prism assembly. A companion paper (Fischer et al. 2008) is presenting the science drivers and mechanical design of the DPA, while this paper is focusing on optical manufacturing and overall verification processes. The first part of this paper describes the manufacturing of Zinc-sulphide and Germanium prisms and techniques to ensure an accurate positioning of the prisms in their holder. (1) The delicate manufacturing of Ge and ZnS materials and (2) the severe specifications on the bearing and optical surfaces flatness and the tolerance on the prism optical angles make this process innovating. The specifications verification is carried out using mechanical and optical measurements; the implemented techniques are described in this paper. The second part concerns the qualification program of the double-prism assembly, including the prisms, the holder and the prisms anti-reflective coatings qualification. Both predictions and actual test results are shown.
    Full-text · Article · Jul 2008 · Proceedings of SPIE - The International Society for Optical Engineering
  • [Show abstract] [Hide abstract]
    ABSTRACT: Based on its experience of space application instrument and its development of cryomechanism for astronomical ground based instrument VLT / VISIR, CEA Saclay is proposing a new concept of Space Cryomechanism. This design is based on VLT/VISIR cryo-mechanism design adapted to space requirements taking into account all the specification of space environment (vibrations at launch, cryogenic vacuum, materials, radiations, ...). The original concept of the design is based on the association of the key elements: a dog-clutch with Hirth teeth jaws coupled to a step-by-step space qualified cryo-motor, a bellows that allows for separation of indexing and rotating functions, and enlarged bearings design in "O" arrangement that increase robustness to vibration. The actuator has 360 steady positions that can be reached within les than a second with repeatability of 5 arcsec peak to peak. After a presentation of the details of the concept and of its benefits to robustness to space environment, the paper describes the thoroughly qualification program of the cryo-mechanism with respect to space requirements (cryo-cycling, indexing accuracy, power consumption, heat dissipation, motorisation margins, vibrations). This cryo-mechanism may be built in 3 different sizes for wheels up to 10 kg.
    No preview · Article · Jul 2008 · Proceedings of SPIE - The International Society for Optical Engineering
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The development program of the flight model imaging camera for the PACS instrument on-board the Herschel spacecraft is nearing completion. This camera has two channels covering the 60 to 210 microns wavelength range. The focal plane of the short wavelength channel is made of a mosaic of 2x4 3-sides buttable bolometer arrays (16x16 pixels each) for a total of 2048 pixels, while the long wavelength channel has a mosaic of 2 of the same bolometer arrays for a total of 512 pixels. The 10 arrays have been fabricated, individually tested and integrated in the photometer. They represent the first filled arrays of fully collectively built bolometers with a cold multiplexed readout, allowing for a properly sampled coverage of the full instrument field of view. The camera has been fully characterized and the ground calibration campaign will take place after its delivery to the PACS consortium in mid 2006. The bolometers, working at a temperature of 300 mK, have a NEP close to the BLIP limit and an optical bandwidth of 4 to 5 Hz that will permit the mapping of large sky areas. This paper briefly presents the concept and technology of the detectors as well as the cryocooler and the warm electronics. Then we focus on the performances of the integrated focal planes (responsivity, NEP, low frequency noise, bandwidth). Comment: 12 pages, 14 figures. To appear in Proc. SPIE 6265, "Space Telescopes and Instrumentation I", 2006 May 24-31, Orlando, Florida USA (6265-11). Higher resolution of the article available on demand (email nbillot at
    Full-text · Article · Jun 2006 · Proceedings of SPIE - The International Society for Optical Engineering