Adam Rubrum

St. Jude Children's Research Hospital, Memphis, Tennessee, United States

Are you Adam Rubrum?

Claim your profile

Publications (31)137.23 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Importance: The number of humans infected with avian influenza viruses is increasing, raising concerns of the emergence of avian influenza viruses resistant to neuraminidase (NA) inhibitors (NAIs). As most studies have focused on NAI-resistance in human influenza viruses, here we investigated the molecular changes in NA that could confer NAI-resistance in avian viruses grown in immortalized monolayer cells, especially those of the N3, N7 and N9 subtypes, which have caused human infections. We identified not only numerous NAI-resistant substitutions previously reported in other NA subtypes but also several novel changes conferring reduced susceptibility to NAIs, which are subtype-specific. The findings indicate that some resistance markers are common across NA subtypes but other markers needs to be determined empirically for each subtype. The study also implies that antiviral surveillance monitoring could play a critical role in the clinical management of influenza infection and an essential component of pandemic preparedness.
    Full-text · Article · Aug 2015 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Unlabelled: Highly pathogenic H5N1 avian influenza viruses are associated with severe disease in humans and continue to be a pandemic threat. While vaccines are available, other approaches are required for patients that typically respond poorly to vaccination, such as the elderly and the immunocompromised. To produce a therapeutic agent that is highly efficacious at low doses and is broadly specific against antigenically drifted H5N1 influenza viruses, we developed two neutralizing monoclonal antibodies and combined them into a single bispecific Fc fusion protein (the Fc dual-affinity retargeting [FcDART] molecule). In mice, a single therapeutic or prophylactic dose of either monoclonal antibody at 2.5 mg/kg of body weight provided 100% protection against challenge with A/Vietnam/1203/04 (H5N1) or the antigenically drifted strain A/Whooper swan/Mongolia/244/05 (H5N1). In ferrets, a single 1-mg/kg prophylactic dose provided 100% protection against A/Vietnam/1203/04 challenge. FcDART was also effective, as a single 2.5-mg/kg therapeutic or prophylactic dose in mice provided 100% protection against A/Vietnam/1203/04 challenge. Antibodies bound to conformational epitopes in antigenic sites on the globular head of the hemagglutinin protein, on the basis of analysis of mutants with antibody escape mutations. While it was possible to generate escape mutants in vitro, they were neutralized by the antibodies in vivo, as mice infected with escape mutants were 100% protected after only a single therapeutic dose of the antibody used to generate the escape mutant in vitro. In summary, we have combined the antigen specificities of two highly efficacious anti-H5N1 influenza virus antibodies into a bispecific FcDART molecule, which represents a strategy to produce broadly neutralizing antibodies that are effective against antigenically diverse influenza viruses. Importance: Highly pathogenic H5N1 avian influenza viruses are associated with severe disease in humans and are a pandemic threat. A vaccine is available, but other approaches are required for patients that typically respond poorly to vaccination, such as the elderly and the immunocompromised. The variability of the virus means that such an approach must be broad spectrum. To achieve this, we developed two antibodies that neutralize H5N1 influenza viruses. In mice, these antibodies provided complete protection against a spectrum of H5N1 influenza viruses at a single low dose. We then combined the two antibodies into a single molecule, FcDART, which combined the broad-spectrum activity and protective efficacy of both antibodies. This treatment provides a novel and effective therapeutic agent or prophylactic with activity against highly pathogenic H5N1 avian influenza viruses.
    Full-text · Article · Feb 2015 · Journal of Virology
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cleavage motif in the hemagglutinin (HA) protein of highly pathogenic H5 and H7 subtypes of avian influenza viruses is characterized by a peptide insertion or a multibasic cleavage site (MBCS). Here, we isolated an H4N2 virus from quails (Quail/CA12) with two additional arginines in the HA cleavage site, PEKRRTR/G, forming an MBCS-like motif. Quail/CA12 is a reassortant virus with the HA and neuraminidase (NA) gene most similar to a duck-isolated H4N2 virus, PD/CA06 with a monobasic HA cleavage site. Quail/CA12 required exogenous trypsin for efficient growth in culture and caused no clinical illness in infected chickens. Quail/CA12 had high binding preference for α2,6-linked sialic acids and showed higher replication and transmission ability in chickens and quails than PD/CA06. Although the H4N2 virus remained low pathogenic, these data suggests that the acquisition of MBCS in the field is not restricted to H5 or H7 subtypes.
    No preview · Article · Aug 2014 · Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Avian influenza virus subtype H9N2 has been circulating in the Middle East since the 1990s. For uncertain reasons, H9N2 was not detected in Egyptian farms until the end of 2010. Circulation of H9N2 viruses in Egyptian poultry in the presence of the enzootic highly pathogenic H5N1 subtype adds a huge risk factor to the Egyptian poultry industry. In this study, 22 H9N2 viruses collected from 2011 to 2013 in Egypt were isolated and sequenced. The genomic signatures and protein sequences of these isolates were analyzed. Multiple mammalian-host-associated mutations were detected that favor transmission from avian to mammalian hosts. Other mutations related to virulence were also identified. Phylogenetic data showed that Egyptian H9N2 viruses were closely related to viruses isolated from neighboring Middle Eastern countries, and their HA gene resembled those of viruses of the G1-like lineage. No reassortment was detected with H5N1 subtypes. Serological analysis of H9N2 virus revealed antigenic conservation among Egyptian isolates. Accordingly, continuous surveillance that results in genetic and antigenic characterization of H9N2 in Egypt is warranted.
    Full-text · Article · Jul 2014 · Archives of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The H7N9 influenza virus caused significant mortality and morbidity in infected humans during an outbreak in China in 2013 stimulating vaccine development efforts. As previous H7-based vaccines have been poorly immunogenic in humans we sought to determine the immunogenic and protective properties of an inactivated whole virus vaccine derived from a 2013 H7N9 virus in ferrets. As whole virus vaccine preparations have been shown to be more immunogenic in humans, but less likely to be used, than split or surface antigen formulations, we vaccinated ferrets with a single dose of 15, 30, or 50μg of the vaccine and subsequently challenged with wild-type A/Anhui/1/2013 (H7N9) either by direct instillation or by contact with infected animals. Although ferrets vaccinated with higher doses of vaccine had higher serum hemagglutinin inhibition (HI) titers, the titers were still low. During subsequent instillation challenge, however, ferrets vaccinated with 50μg of vaccine showed no illness and shed significantly less virus than mock vaccinated controls. All vaccinated ferrets had lower virus loads in their lungs as compared to controls. In a separate study where unvaccinated-infected ferrets were placed in the same cage with vaccinated-uninfected ferrets, vaccination did not prevent infection in the contact ferrets, although they showed a trend of lower viral load. Overall, we conclude that inactivated whole-virus H7N9 vaccine was able to reduce the severity of infection and viral load, despite the lack of hemagglutinin-inhibiting antibodies.
    Full-text · Article · Jun 2014 · Vaccine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: CClade 2.2 highly pathogenic H5N1 viruses have been in continuous circulation in Egyptian poultry since 2006. Their persistence caused significant genetic drift that led to the re-classification of these viruses into sub-clades 2.2.1 and 2.2.1.1. Here, we conducted full genome sequence and phylogenetic analyses of 45 H5N1 isolated during 2006-2013 through systematic surveillance in Egypt, and 53 viruses that were previously sequenced and available in the public domain. Results indicate that H5N1 viruses in Egypt continue to evolve and a new distinct cluster has emerged. Mutations affecting viral virulence, pathogenicity, transmission, receptor-binding preference, and drug resistance were studied. In light of our findings that H5N1 in Egypt continues to evolve, surveillance and molecular studies need to be sustained.
    Full-text · Article · Apr 2014 · Journal of General Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Continuous circulation of influenza A(H5N1) virus among poultry in Egypt has created an epicenter in which the viruses evolve into newer subclades and continue to cause disease in humans. To detect influenza viruses in Egypt, since 2009 we have actively surveyed various regions and poultry production sectors. From August 2010 through January 2013, >11,000 swab samples were collected; 10% were positive by matrix gene reverse transcription PCR. During this period, subtype H9N2 viruses emerged, cocirculated with subtype H5N1 viruses, and frequently co-infected the same avian host. Genetic and antigenic analyses of viruses revealed that influenza A(H5N1) clade 2.2.1 viruses are dominant and that all subtype H9N2 viruses are G1-like. Cocirculation of different subtypes poses concern for potential reassortment. Avian influenza continues to threaten public and animal health in Egypt, and continuous surveillance for avian influenza virus is needed.
    Full-text · Article · Apr 2014 · Emerging Infectious Diseases
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Highly pathogenic H5N1 and low pathogenic H9N2 influenza viruses are endemic to poultry markets in Bangladesh and have cocirculated since 2008. H9N2 influenza viruses circulated constantly in the poultry markets, whereas highly pathogenic H5N1 viruses occurred sporadically, with peaks of activity in cooler months. Thirty highly pathogenic H5N1 influenza viruses isolated from poultry were characterized by antigenic, molecular, and phylogenetic analyses. Highly pathogenic H5N1 influenza viruses from clades 2.2.2 and 2.3.2.1 were isolated from live bird markets only. Phylogenetic analysis of the 30 H5N1 isolates revealed multiple introductions of H5N1 influenza viruses in Bangladesh. There was no reassortment between the local H9N2 influenza viruses and H5N1 genotype, despite their prolonged cocirculation. However, we detected two reassortant H5N1 viruses, carrying the M gene from the Chinese H9N2 lineage, which briefly circulated in the Bangladesh poultry markets and then disappeared. On the other hand, interclade reassortment occurred within H5N1 lineages and played a role in the genesis of the currently dominant H5N1 viruses in Bangladesh. Few ‘human-like’ mutations in H5N1 may account for the limited number of human cases. Antigenically, clade 2.3.2.1 H5N1 viruses in Bangladesh have evolved since their introduction and are currently mainly homogenous, and show evidence of recent antigenic drift. Although reassortants containing H9N2 genes were detected in live poultry markets in Bangladesh, these reassortants failed to supplant the dominant H5N1 lineage.
    Full-text · Article · Feb 2014 · Emerging Microbes and Infections
  • [Show abstract] [Hide abstract]
    ABSTRACT: The cleavage motif in the hemagglutinin (HA) protein of highly pathogenic H5 and H7 subtypes of avian influenza viruses is characterized by a peptide insertion or a multibasic cleavage site (MBCS). Here, we isolated an H4N2 virus from quails (Quail/CA12) with two additional arginines in the HA cleavage site, PEKRRTR/G, forming an MBCS-like motif. Quail/CA12 is a reassortant virus with the HA and neuraminidase (NA) gene most similar to a duck-isolated H4N2 virus, PD/CA06 with a monobasic HA cleavage site. Quail/CA12 required exogenous trypsin for efficient growth in culture and caused no clinical illness in infected chickens. Quail/CA12 had high binding preference for α2,6-linked sialic acids and showed higher replication and transmission ability in chickens and quails than PD/CA06. Although the H4N2 virus remained low pathogenic, these data suggests that the acquisition of MBCS in the field is not restricted to H5 or H7 subtypes.
    No preview · Article · Jan 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: nfluenza A (H9N2) viruses are a genetically diverse population that infects wild and domestic avian species and mammals and contributed the internal gene segments to the A/H5N1 and A/H7N9 viruses associated with lethal human infections. Here we comprehensively assess the potential risk to mammals of a diverse panel of A/H9N2 viruses, representing the major H9N2 clades, using a combination of in vitro assays (e.g., antiviral susceptibility and virus growth in primary differentiated human airway cells) and in vivo assays (e.g., replication, transmission and/or pathogenicity of viruses in ducks, pigs, mice and ferrets). We observed that viruses isolated from humans, A/Hong Kong/1073/1999 and A/Hong Kong/33982/2009, had the highest risk potential. However, the A/swine/ Hong Kong/9A-1/1998 and A/chicken/Hong Kong/G9/1997 viruses also displayed several features suggesting a fitness profile adapted to human infection and transmission. The North American avian H9N2 clade virus had the lowest risk profile, and the other viruses tested displayed various levels of fitness across individual assays. In many cases, the known genotypic polymorphisms alone were not sufficient to accurately predict the virus’ phenotype. Therefore, we conclude that comprehensive risk analyses based on surveillance of circulating influenza virus strains are necessary to assess the potential for human infection by emerging influenza A viruses.
    Full-text · Article · Nov 2013 · Emerging Microbes and Infections
  • [Show abstract] [Hide abstract]
    ABSTRACT: Immune recognition of protein antigens relies on the combined interaction of multiple antibody loops, which provide a fairly large footprint and constrain the size and shape of protein surfaces that can be targeted. Single protein loops can mediate extremely high-affinity binding, but it is unclear whether such a mechanism is available to antibodies. Here we report the isolation and characterization of an antibody called C05, which neutralizes strains from multiple subtypes of influenza A virus, including H1, H2 and H3. X-ray and electron microscopy structures show that C05 recognizes conserved elements of the receptor-binding site on the haemagglutinin surface glycoprotein. Recognition of the haemagglutinin receptor-binding site is dominated by a single heavy-chain complementarity-determining region 3 loop, with minor contacts from heavy-chain complementarity-determining region 1, and is sufficient to achieve nanomolar binding with a minimal footprint. Thus, binding predominantly with a single loop can allow antibodies to target small, conserved functional sites on otherwise hypervariable antigens.
    No preview · Article · Sep 2012 · Nature
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Avian influenza viruses (H5N1) of clades 2.3.4.1, 2.3.4.2, and 2.3.2.1 were introduced into Laos in 2009-2010. To investigate these viruses, we conducted active surveillance of poultry during March 2010. We detected viruses throughout Laos, including several interclade reassortants and 2 subgroups of clade 2.3.4, one of which caused an outbreak in May 2010.
    Full-text · Article · Jul 2012 · Emerging Infectious Diseases
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe virus isolation, full genome sequence analysis, and clinical pathology in ferrets experimentally inoculated with pandemic (H1N1) 2009 virus recovered from a clinically ill captive cheetah that had minimal human contact. Evidence of reverse zoonotic transmission by fomites underscores the substantial animal and human health implications of this virus.
    Full-text · Article · Feb 2012 · Emerging Infectious Diseases
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Exposure to contemporary seasonal influenza A viruses affords partial immunity to pandemic H1N1 2009 influenza A virus (pH1N1) infection. The impact of antibodies to the neuraminidase (NA) of seasonal influenza A viruses to cross-immunity against pH1N1 infection is unknown. Antibodies to the NA of different seasonal H1N1 influenza strains were tested for cross-reactivity against A/California/04/09 (pH1N1). A panel of reverse genetic (rg) recombinant viruses was generated containing 7 genes of the H1N1 influenza strain A/Puerto Rico/08/34 (PR8) and the NA gene of either the pandemic H1N1 2009 strain (pH1N1) or one of the following contemporary seasonal H1N1 strains: A/Solomon/03/06 (rg Solomon) or A/Brisbane/59/07 (rg Brisbane). Convalescent sera collected from mice infected with recombinant viruses were measured for cross-reactive antibodies to pH1N1 via Hemagglutinin Inhibition (HI) or Enzyme-Linked Immunosorbent Assay (ELISA). The ectodomain of a recombinant NA protein from the pH1N1 strain (pNA-ecto) was expressed, purified and used in ELISA to measure cross-reactive antibodies. Analysis of sera from elderly humans immunized with trivalent split-inactivated influenza (TIV) seasonal vaccines prior to 2009 revealed considerable cross-reactivity to pNA-ecto. High titers of cross-reactive antibodies were detected in mice inoculated with either rg Solomon or rg Brisbane. Convalescent sera from mice inoculated with recombinant viruses were used to immunize naïve recipient Balb/c mice by passive transfer prior to challenge with pH1N1. Mice receiving rg California sera were better protected than animals receiving rg Solomon or rg Brisbane sera. The NA of contemporary seasonal H1N1 influenza strains induces a cross-reactive antibody response to pH1N1 that correlates with reduced lethality from pH1N1 challenge, albeit less efficiently than anti-pH1N1 NA antibodies. These findings demonstrate that seasonal NA antibodies contribute to but are not sufficient for cross-reactive immunity to pH1N1.
    Full-text · Article · Oct 2011 · PLoS ONE
  • Source
    Dataset: Figure S2
    [Show abstract] [Hide abstract]
    ABSTRACT: Activity and specific reactivity of purified pNA-ecto protein. The activity of serial two-fold dilutions of purified pNA-ecto in the presence or absence of CaCl2 was tested. A) Activity was determined by calculating the percent increase in cleavage of the substrate fetuin between pNA-ecto and PBS only wells. Activity was measured at O.D. of 550 nm. B) ELISA were performed using sera collected from humans (65–93 yrs old) 4 weeks post immunization with TIV containing either Solomon or Brisbane H1N1 components. Pooled sera from mice inoculated with PBS or infected wt California were used as negative, positive controls respectively. Purified pNA-ecto was used to test the specific reactivity of human and animal sera in all assays. Individuals immunized with either TIV Solomon or Brisbane H1N1 developed a large degree of cross-reactive Ig antibodies to pNA-ecto by ELISA. Little reactivity was observed in negative control sera. Conversely, high levels of Ig titers were seen in mice infected with homologous wt virus. Observed differences in Ig titers detected between Solomon and Brisbane human sera (P≥0.27). Data is representative of two independent experiments. (TIF)
    Preview · Dataset · Oct 2011
  • Source
    Dataset: Figure S1
    [Show abstract] [Hide abstract]
    ABSTRACT: Analysis of recombinant NA protein of pandemic H1N1 2009 virus. The NA ectodomain protein of the A/California/04/09 strain (pNA-ecto) was expressed using a baculovirus insect cell expression system and purified (materials and methods). A) Size-exclusion chromatography of recombinant NA protein. Purified pNA-ecto protein elutes as a well-folded tetramer (labeled black peak) with an apparent molecular size of∼200 kDa compared to molecular size standards (labeled gray peaks) on a Superdex 200 size-exclusion chromatography column. B) Denaturing Coomassie-stained gel of purified tetrameric pNA-ecto (*) compared to molecular weight standards (kDa). (TIF)
    Preview · Dataset · Oct 2011
  • Source
    Dataset: Figure S3
    [Show abstract] [Hide abstract]
    ABSTRACT: Analysis of anti N2 antibodies on protection against pandemic H1N1 2009 virus. Naïve Balb/c mice were injected intraperitoneally with pooled sera collected from mice infected with 7+1 rg X−31 or inoculated with PBS. All passively transferred mice were challenged with a lethal dose (106 EID50) of wt pH1N1 virus. Survival and weight loss were monitored post challenge. A) Percent survival was measured between animals daily for 12 days post virus challenge. B) Average weight loss in each treated group after virus challenge was monitored daily for 12 days. Data is representative of two independent experiments. (TIF)
    Preview · Dataset · Oct 2011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As a result of human-to-pig transmission, pandemic influenza A (H1N1) 2009 virus was detected in pigs soon after it emerged in humans. In the United States, this transmission was quickly followed by multiple reassortment between the pandemic virus and endemic swine viruses. Nine reassortant viruses representing 7 genotypes were detected in commercial pig farms in the United States. Field observations suggested that the newly described reassortant viruses did not differ substantially from pandemic (H1N1) 2009 or endemic strains in their ability to cause disease. Comparable growth properties of reassortant and endemic viruses in vitro supported these observations; similarly, a representative reassortant virus replicated in ferrets to the same extent as did pandemic (H1N1) 2009 and endemic swine virus. These novel reassortant viruses highlight the increasing complexity of influenza viruses within pig populations and the frequency at which viral diversification occurs in this ecologically important viral reservoir.
    Full-text · Article · Sep 2011 · Emerging Infectious Diseases
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Because of continuous circulation in different animal species and humans, influenza viruses have host-specific phenotypic and genetic features. Reassortment of the genome segments can significantly change virus phenotype, potentially generating virus with pandemic potential. In 2009, a new pandemic influenza virus emerged. In this study, we attempted to find precursor viruses or genes of pandemic H1N1 influenza 2009 among 25 swine influenza viruses, isolated in the West Central region of the United States of America (USA), between 2007 and 2009. The Phylogenetically Similar Triple-Reassortant Internal Genes (PSTRIG) cassette of all the viruses studied here as well as the PSTRIG cassette of pandemic H1N1 viruses have close but equidistant phylogenetic relationships to the early triple-reassortant swine H3N2 influenza A isolated in the USA in 1998. Samples (nasal swabs and lung tissue lavage) were taken from swine with or without clinical signs of respiratory disease via farmer-funded syndromic surveillance. All studied viruses were isolated in Madin-Darby Canine Kidney cell cultures from the above-mentioned samples according to standard protocols recommended for influenza virus isolation. Sequences were obtained using BigDye Terminator v3.1 Cycle Sequencing kit. Phylogenetic trees were built with MEGA 4.0 software using maximum composite likelihood algorithm and neighbor-joining method for tree topology reconstruction. Among the 25 viruses studied, we have not found any gene segments of Eurasian origin. Our results suggest that pandemic H1N1 viruses diverged and are not directly descended from swine viruses that have been circulating in USA since 1998.
    Full-text · Article · May 2011 · Influenza and Other Respiratory Viruses
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early epidemiologic and serologic studies have suggested pre-existing immunity to the pandemic A (H1N1) 2009 influenza virus (H1N1pdm) may be altering its morbidity and mortality in humans. To determine the role that contemporary seasonal H1N1 virus infection or trivalent inactivated vaccine (TIV) might be playing in this immunity we conducted a vaccination-challenge study in ferrets. Vaccination with TIV was unable to alter subsequent morbidity or contact transmission in ferrets following challenge with H1N1pdm. Conversely, prior infection with the contemporary seasonal H1N1 strain altered morbidity, but not transmission, of H1N1pdm despite the detection of only minimal levels of cross reactive antibodies.
    Full-text · Article · Apr 2011 · Vaccine