Dalong Yi

Nanjing Agricultural University, Nan-ching, Jiangsu Sheng, China

Are you Dalong Yi?

Claim your profile

Publications (2)4.22 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: To study the genetic mechanism underlying the tissue culture response (TCR) of immature embryos, callus induction and regeneration were performed in two separate trials using the recombinant inbred line (RIL) derived from a cross of Nanda2419 with Wangshuibai. In the first trial, immature embryos were collected from plants grown in the greenhouse in the winter of 2005; while in the second trial, immature embryos were collected from donor plants grown in the field during the growing season. Through whole genome screening, seven chromosome regions conditioning percent embryos forming embryogenic callus (PEFEC) and one conditioning percent callus pieces regenerating plantlets (PCRP) were detected. These QTLs were distributed on chromosomes of homoeologous groups 2, 3, 5 and 7. Among all, QPefec.nau-3B.2, QPefec.nau-7D, and QPcrp.nau-3A were consistently identified. The relationship of these identified wheat TCR QTLs with those of other cereal crops has been evaluated. PCR markers linked to TCR QTLs would facilitate germplasm identification, marker-assisted evaluation and utilization of these QTLs.
    No preview · Article · May 2009 · Plant Cell Tissue and Organ Culture
  • [Show abstract] [Hide abstract]
    ABSTRACT: The mature wheat embryo is arguably one of the best explants for genetic transformation because of its unlimited availability and lack of growth season restriction. However, an efficient regeneration system using mature wheat embryos (Triticum aestivum L.) is still not available. To identify genes related to the tissue culture response (TCR) of wheat, QTLs for callus induction from mature embryos and callus regeneration were mapped using an RIL population derived from the cross of "Wangshuibai" with "Nanda2419" which has a good TCR. By whole genome scanning we identified five, four and four chromosome regions conditioning, respectively, percent embryos forming a callus (PEFC), percent calli regenerating plantlets (PCRP), and number of plantlets per regenerating callus (NPRC). The major QTLs QPefc.nau-2A and QPcrp.nau-2A were mapped to the long arm of chromosome 2A, explaining up to 22.8% and 17.6% of the respective phenotypic variance. Moreover, two major QTLs for NPRC were detected on chromosomes 2D and 5D; these together explained 51.6% of the phenotypic variance. We found that chromosomes 2A, 2D, 5A, 5B and 5D were associated via different intervals with at least two of the three TCR indexes used. Based on this study and other reports, the TCRs of different explant types of wheat may be under the control of shared or tightly linked genes, while different genes or gene combinations may govern the stages from callus induction to plantlet regeneration. The importance of group 2 and 5 chromosomes in controlling the TCRs of Triticeae crops and the likely conservation of the corresponding genes in cereals are discussed.
    No preview · Article · Jul 2007 · Molecules and Cells