C J Paige

University of Toronto, Toronto, Ontario, Canada

Are you C J Paige?

Claim your profile

Publications (157)1129.19 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Systemic inflammation perturbs the bone marrow environment by evicting resident B cells and favoring granulopoiesis over lymphopoiesis. Despite these conditions a subset of marrow B cell remains to become activated and produce potent acute IgM responses. This discrepancy is currently unresolved and a complete characterization of early perturbations in the B cell niche has not been undertaken. Here, we show that within a few hours of challenging mice with adjuvant or cecal puncture, B cells accumulate in the bone marrow redistributed away from sinusoid vessels. This response correlates with enhanced sensitivity to CXCL12 but not CXCL13 or CCL21. Concurrently, a number of B cell survival and differentiation factors are elevated to produce a transiently supportive milieu. Disrupting homing dynamics with a CXCR4 inhibitor reduced the formation of IgM secreting cells. These data highlight the rapidity with which peripheral inflammation modifies the marrow compartment, and demonstrate that such modifications regulate acute IgM production within this organ. Further, our study indicates that conversion to a state of emergency granulopoiesis is temporally delayed allowing B cells opportunity to respond to antigen. Copyright © 2015 American Society of Hematology.
    No preview · Article · Jul 2015 · Blood
  • [Show abstract] [Hide abstract]
    ABSTRACT: - Copyright © 2015, Ferrata Storti Foundation.
    No preview · Article · Feb 2015 · Haematologica
  • Megan E Nelles · Christopher J Paige
    [Show abstract] [Hide abstract]
    ABSTRACT: CD4(+) T cells represent an entire arm of the immune system that has hitherto been incompletely understood, but their potential to act as both helper and effector may make them optimal protagonists in immunotherapeutic approaches to treat cancer. Cytokine therapy can activate this population in a manner that ensures maximal diversification of effector function for a robust immune response.
    No preview · Article · Jan 2015 · OncoImmunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hemokinin-1, the newest tachykinin encoded by the preprotachykinin C (Tac4) gene, is predominatly produced by immune cells. Similarly to substance P, it has the greatest affinity to the tachykinin NK1 receptor, but has different binding site and signaling mechanisms. Furthermore, several recent data indicate the existence of a not yet identified own receptor and divergent non-NK1-mediated actions. Since there is no information on its functions in the airways, we investigated its role in endotoxin-induced pulmonary inflammation. Acute pneumonitis was induced in Tac4 gene-deleted (Tac4(-/-)) mice compared to C57Bl/6 wildtypes by intranasal E. coli lipopolysaccharide (LPS). Airway responsiveness to inhaled carbachol was measured with unrestrained whole body plethysmography 24h later. Semiquantitative histopathological scoring was performed; reactive oxygen species (ROS) production was measured with luminol bioluminescence, myeloperoxidase activity with spectrophotometry, and inflammatory cytokines with Luminex. All inflammatory parameters, such as histopathological alterations (perivascular edema, neutrophil/macrophage accumulation, goblet cell hyperplasia), myeloperoxidase activity, ROS production, as well as interleukin-1beta, interleukin-6 and keratinocyte chemoattractant concentrations were significantly diminished in the lung of Tac4(-/-) mice. However, bronchial hyperreactivity similarly developed in both groups. Interestingly, in LPS-treated Tac4(-/-) mouse lungs, bronchus-associated, large, follicle-like lymphoid structures developed. We provide the first evidence that hemokinin-1 plays a crucial pro-inflammatory role in the lung by increasing inflammatory cell activities, but might be a specific regulator of lymphocyte functions. Copyright © 2014. Published by Elsevier Inc.
    Full-text · Article · Dec 2014 · Peptides
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inciting the cellular arm of adaptive immunity has been the fundamental goal of cancer immunotherapy strategies, specifically focusing on inducing tumour antigen-specific responses by CD8+ cytotoxic T lymphocytes (CTLs). However, there is an emerging appreciation that the cytotoxic function of CD4+ T cells can be effective in a clinical setting. Harnessing this potential will require an understanding of how such cells arise. In this study we use an IL-12 transduced variant of the 70Z/3 leukemia cell line in a B6D2F1 (BDF1) murine model system to reveal a novel cascade of cells and soluble factors that activate anti-cancer CD4+ killer cells. We show that natural killer T (NKT) cells play a pivotal role by activating dendritic cells (DCs) in a contact-dependent manner; soluble products of this interaction, including MCP-1, propagate the activation signal culminating in development of CD4+CTL that directly mediate an anti-leukemia response while also orchestrating a multi-pronged attack by other effector cells. A more complete picture of the conditions that induce such a robust response will allow us to capitalize on CD4+ T cell plasticity for maximum therapeutic effect.
    No preview · Article · Aug 2014

  • No preview · Article · Aug 2014 · Acta Physiologica

  • No preview · Article · Aug 2014 · Digestive Diseases and Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inflammation has a critical role in the development of insulin resistance. Recent evidence points to a contribution by the central nervous system in the modulation of peripheral inflammation through the anti-inflammatory reflex. However, the importance of this phenomenon remains elusive in type 2 diabetes pathogenesis. Here we show that rat insulin-2 promoter (Rip)-mediated deletion of Pten, a gene encoding a negative regulator of PI3K signaling, led to activation of the cholinergic anti-inflammatory pathway that is mediated by M2 activated macrophages in peripheral tissues. As such, Rip-cre(+) Pten(flox/flox) mice showed lower systemic inflammation and greater insulin sensitivity under basal conditions compared to littermate controls, which were abolished when the mice were treated with an acetylcholine receptor antagonist or when macrophages were depleted. After feeding with a high-fat diet, the Pten-deleted mice remained markedly insulin sensitive, which correlated with massive subcutaneous fat expansion. They also exhibited more adipogenesis with M2 macrophage infiltration, both of which were abolished after disruption of the anti-inflammatory efferent pathway by left vagotomy. In summary, we show that Pten expression in Rip(+) neurons has a critical role in diabetes pathogenesis through mediating the anti-inflammatory reflex.
    No preview · Article · Apr 2014 · Nature medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The function of the neurokinin 1 (NK1) receptor was investigated in the DSS-induced mouse colitis model using NK1 receptor-deficient mice and the selective antagonist netupitant. Colitis was induced by oral administration of 20 mg/ml DSS solution for 7 days in C57BL/6 and Tacr1 KO animals (n = 5-7). During the induction, one-half of the C57BL/6 and Tacr1 KO group received one daily dose of 6 mg/kg netupitant, administered intraperitoneally, the other half of the group received saline, respectively. Disease activity index (DAI), on the basis of stool consistency, blood and weight loss, was determined over 7 days. Histological evaluation, myeloperoxidase (MPO) measurement, cytokine concentrations and receptor expression analysis were performed on the colon samples. NK1 receptors are up-regulated in the colon in response to DSS treatment. DSS increased DAI, histopathological scores, BLC, sICAM-1, IFN-γ, IL-16 and JE in wildtype mice, which were significantly reduced in NK1 receptor-deficient ones. NK1 receptor antagonism with netupitant significantly diminished DAI, inflammatory histopathological alterations, BLC, IFN-γ, IL-13 and IL-16 in wildtype mice, but not in the NK1-deficient ones. MPO was similarly elevated and netupitant significantly decreased its activity in both groups. NK1 receptor antagonism could be beneficial for colitis via inhibiting different inflammatory mechanisms.
    Full-text · Article · Jan 2014 · Agents and Actions
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin (IL)-12 is the key cytokine in the initiation of a Th1 response and has shown promise as an anti-cancer agent; however, clinical trials involving IL-12 have been unsuccessful due to toxic side-effects. To address this issue, lentiviral vectors were used to transduce tumour cell lines that were injected as an autologous tumour cell vaccine. The focus of the current study was to test the efficacy of this approach in a solid tumour model. SCCVII cells that were transduced to produce IL-12 at different concentrations were then isolated. Subcutaneous injection of parental SCCVII cells results in tumour development, while a mixture of IL-12-producing and non-producing cells results in tumour clearance. Interestingly, when comparing mice injected a mixture of SCCVII and either high IL-12-producing tumour cells or low IL-12-producing tumour cells, we observed that mixtures containing small amounts of high producing cells lead to tumour clearance, whereas mixtures containing large amounts of low producing cells fail to elicit protection, despite the production of equal amounts of total IL-12 in both mixtures. Furthermore, immunizing mice with IL-12-producing cells leads to the establishment of both local and systemic immunity against challenge with SCCVII. Using depletion antibodies, it was shown that both CD4(+) and CD8(+) cells are crucial for therapy. Lastly, we have established cell clones of other solid tumour cell lines (RM-1, LLC1 and moto1.1) that produce IL-12. Our results show that the delivery of IL-12 by cancer cells is an effective route for immune activation.
    Full-text · Article · Nov 2013 · Journal of Cellular and Molecular Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor GATA-3 is expressed and required for differentiation and function throughout the T lymphocyte lineage. Despite evidence it may also be expressed in multipotent hematopoietic stem cells (HSCs), any role for GATA-3 in these cells has remained unclear. Here we found GATA-3 was in the cytoplasm in quiescent long-term stem cells from steady-state bone marrow but relocated to the nucleus when HSCs cycled. Relocation depended on signaling via the mitogen-activated protein kinase p38 and was associated with a diminished capacity for long-term reconstitution after transfer into irradiated mice. Deletion of Gata3 enhanced the repopulating capacity and augmented the self-renewal of long-term HSCs in cell-autonomous fashion without affecting the cell cycle. Our observations position GATA-3 as a regulator of the balance between self-renewal and differentiation in HSCs that acts downstream of the p38 signaling pathway.
    Full-text · Article · Aug 2013 · Nature Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Substance P, encoded by the Tac1 gene, is involved in neurogenic inflammation and hyperalgesia via neurokinin 1 (NK1) receptor activation. Its non-neuronal counterpart, hemokinin-1, which is derived from the Tac4 gene, is also a potent NK1 agonist. Although hemokinin-1 has been described as a tachykinin of distinct origin and function compared to SP, its role in inflammatory and pain processes has not yet been elucidated in such detail. In this study, we analysed the involvement of tachykinins derived from the Tac1 and Tac4 genes, as well as the NK1 receptor in chronic arthritis of the mouse. Complete Freund's Adjuvant was injected intraplantarly and into the tail of Tac1(-/-), Tac4(-/-), Tacr1(-/-) (NK1 receptor deficient) and Tac1(-/-/)Tac4(-/-) mice. Paw volume was measured by plethysmometry and mechanosensitivity using dynamic plantar aesthesiometry over a time period of 21 days. Semiquantitative histopathological scoring and ELISA measurement of IL-1β concentrations of the tibiotarsal joints were performed. Mechanical hyperalgesia was significantly reduced from day 11 in Tac4(-/-) and Tacr1(-/-) animals, while paw swelling was not altered in any strain. Inflammatory histopathological alterations (synovial swelling, leukocyte infiltration, cartilage destruction, bone damage) and IL-1β concentration in the joint homogenates were significantly smaller in Tac4(-/-) and Tac1(-/-/)Tac4(-/-) mice. Hemokinin-1, but not substance P increases inflammation and hyperalgesia in the late phase of adjuvant-induced arthritis. While NK1 receptors mediate its antihyperalgesic actions, the involvement of another receptor in histopathological changes and IL-1β production is suggested.
    Full-text · Article · Apr 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tachykinins are a large group of neuropeptides with both central and peripheral activity. Despite the increasing number of studies reporting a growth supportive effect of tachykinin peptides in various in vitro stem cell systems, it remains unclear whether these findings are applicable in vivo. To determine how neurokinin-1 receptor (NK-1R) deficient hematopoietic stem cells would behave in a normal in vivo environment, we tested their reconstitution efficiency using competitive bone marrow repopulation assays. We show here that bone marrow taken from NK-1R deficient mice (Tacr1(-/-)) showed lineage specific B and T cell engraftment deficits compared to wild-type competitor bone marrow cells, providing evidence for an involvement of NK-1R signalling in adult hematopoiesis. Tachykinin knockout mice lacking the peptides SP and/or HK-1 (Tac1 (-/-), Tac4 (-/-) and Tac1 (-/-)/Tac4 (-/-) mice) repopulated a lethally irradiated wild-type host with similar efficiency as competing wild-type bone marrow. The difference between peptide and receptor deficient mice indicates a paracrine and/or endocrine mechanism of action rather than autocrine signalling, as tachykinin peptides are supplied by the host environment.
    Full-text · Article · Mar 2013 · PLoS ONE

  • No preview · Article · Feb 2013 · Molecular Genetics and Metabolism
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The homeodomain-interacting protein kinase (HIPK) family is comprised of four highly related serine/threonine kinases originally identified as co-repressors for various homeodomain-containing transcription factors. The HIPKs have been shown to be involved in growth regulation and apoptosis, with numerous studies highlighting HIPK regulation of the tumor suppressor p53. In this study, we have discovered a B cell homeostatic defect in HIPK1-deficient (HIPK1(-/-)) mice. Lymphopoietic populations within the thymus and bone marrow of HIPK1(-/-) mice appeared normal based upon FACS analysis; however, the spleen exhibited a reduced number of total B cells with a significant loss of transitional-1 and follicular B cell populations. Interestingly, the marginal zone B cell population was expanded in HIPK1(-/-) mice, yielding an increased frequency of these cells. HIPK1(-/-) B cells exhibited impaired cell division in response to B cell receptor cross-linking in vitro based upon thymidine incorporation or CFSE dilution; however, the addition of CD40L rescued HIPK1(-/-) proliferation to wild-type levels. Despite the expanded MZ B cell population in the HIPK1(-/-) mice, the T-independent type 2 humoral response was impaired. These data identify HIPK1 as a novel kinase required for optimal B cell function in mice.
    Preview · Article · Apr 2012 · PLoS ONE
  • A Berger · A H Tran · J Dida · S Minkin · N P Gerard · J Yeomans · C J Paige
    [Show abstract] [Hide abstract]
    ABSTRACT: Studies in mice with targeted deletions of tachykinin genes suggest that tachykinins and their receptors influence emotional behaviors such as aggression, depression and anxiety. Here, we investigated whether TAC1- and TAC4-encoded peptides (substance P and hemokinin-1, respectively) and the neurokinin-1 receptor (NK-1R) are involved in the modulation of sexual behaviors. Male mice deficient for the NK-1R (TACR1 (-/-)) exhibited decreased exploration of female urine in contrast to C57BL/6 control mice and mice deficient for NK-1R ligands such as TAC1 (-/-), TAC4 (-/-) and the newly generated TAC1 (-/-) /TAC4 (-/-) mice. In comparison to C57BL/6 mice, mounting frequency and duration were decreased in male TACR1 (-/-) mice, while mounting latency was increased. Decreased preference for sexual pheromones was also seen in female TACR1 (-/-) mice. Furthermore, administration of the NK-1R-antagonist L-703,606 decreased investigation of female urine by male C57BL/6 mice, suggesting an involvement of NK-1R in urine sniffing behavior. Our results provide evidence for the NK-1R in facilitating sexual approach behavior, as male TACR1 (-/-) mice exhibited blunted approach behavior toward females following the initial interaction compared with C57BL/6 mice. NK-1R signaling may therefore play an important role in pheromone-induced sexual behavior.
    No preview · Article · Apr 2012 · Genes Brain and Behavior
  • Steven A Corfe · Christopher J Paige
    [Show abstract] [Hide abstract]
    ABSTRACT: Interleukin-7 (IL-7) plays several important roles during B cell development including aiding in; the specification and commitment of cells to the B lineage, the proliferation and survival of B cell progenitors; and maturation during the pro-B to pre-B cell transition. Regulation and modulation of IL-7 receptor (IL-7R) signaling is critical during B lymphopoiesis, because excessive or deficient IL-7R signaling leads to abnormal or inhibited B cell development. IL-7 works together with E2A, EBF, Pax-5 and other transcription factors to regulate B cell commitment, while also functions to regulate Ig rearrangement by modulating FoxO protein activation and Rag enhancer activity. Suppressor of cytokine signaling (SOCS) proteins are inhibitors of cytokine activation and, in B cells, function to fine tune IL-7R signaling; ensuring that appropriate IL-7 signals are transmitted to allow for efficient B cell commitment and development.
    No preview · Article · Mar 2012 · Seminars in Immunology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The largest mucosal surface in the body is in the gastrointestinal tract, a location that is heavily colonized by microbes that are normally harmless. A key mechanism required for maintaining a homeostatic balance between this microbial burden and the lymphocytes that densely populate the gastrointestinal tract is the production and transepithelial transport of poly-reactive IgA (ref. 1). Within the mucosal tissues, B cells respond to cytokines, sometimes in the absence of T-cell help, undergo class switch recombination of their immunoglobulin receptor to IgA, and differentiate to become plasma cells. However, IgA-secreting plasma cells probably have additional attributes that are needed for coping with the tremendous bacterial load in the gastrointestinal tract. Here we report that mouse IgA(+) plasma cells also produce the antimicrobial mediators tumour-necrosis factor-α (TNF-α) and inducible nitric oxide synthase (iNOS), and express many molecules that are commonly associated with monocyte/granulocytic cell types. The development of iNOS-producing IgA(+) plasma cells can be recapitulated in vitro in the presence of gut stroma, and the acquisition of this multifunctional phenotype in vivo and in vitro relies on microbial co-stimulation. Deletion of TNF-α and iNOS in B-lineage cells resulted in a reduction in IgA production, altered diversification of the gut microbiota and poor clearance of a gut-tropic pathogen. These findings reveal a novel adaptation to maintaining homeostasis in the gut, and extend the repertoire of protective responses exhibited by some B-lineage cells.
    Full-text · Article · Dec 2011 · Nature
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: During the 2009 H1N1 influenza virus pandemic (pdmH1N1) outbreak, it was found that most individuals lacked antibodies against the new pdmH1N1 virus, and only the elderly showed anti-hemagglutinin (anti-HA) antibodies that were cross-reactive with the new strains. Different studies have demonstrated that prior contact with the virus can confer protection against strains with some degree of dissimilarity; however, this has not been sufficiently explored within the context of a pdmH1N1 virus infection. In this study, we have found that a first infection with the A/Brisbane/59/2007 virus strain confers heterologous protection in ferrets and mice against a subsequent pdmH1N1 (A/Mexico/4108/2009) virus infection through a cross-reactive but non-neutralizing antibody mechanism. Heterologous immunity is abrogated in B cell-deficient mice but maintained in CD8(-/-) and perforin-1(-/-) mice. We identified cross-reactive antibodies from A/Brisbane/59/2007 sera that recognize non-HA epitopes in pdmH1N1 virus. Passive serum transfer showed that cross-reactive sH1N1-induced antibodies conferred protection in naive recipient mice during pdmH1N1 virus challenge. The presence or absence of anti-HA antibodies, therefore, is not the sole indicator of the effectiveness of protective cross-reactive antibody immunity. Measurement of additional antibody repertoires targeting the non-HA antigens of influenza virus should be taken into consideration in assessing protection and immunization strategies. We propose that preexisting cross-protective non-HA antibody immunity may have had an overall protective effect during the 2009 pdmH1N1 outbreak, thereby reducing disease severity in human infections.
    Full-text · Article · Nov 2011 · Journal of Virology
  • Source
    Steven A Corfe · Robert Rottapel · Christopher J Paige
    [Show abstract] [Hide abstract]
    ABSTRACT: During B lymphopoiesis, IL-7 induces survival, proliferation, and differentiation signals that are important during the pro-B to pre-B cell transition. We showed that murine small pre-B stage cells do not signal or proliferate in response to IL-7, yet they maintain IL-7R surface expression. Loss of proliferative responsiveness to IL-7 is mediated by suppressor of cytokine signaling protein 1 (SOCS-1), the expression of which is regulated during B lymphopoiesis, with the highest levels observed in small pre-B cells. SOCS-1 inhibits IL-7 responses in pre-B cell lines and ex vivo B lineage cells. SOCS-1 expression and, thus, responsiveness to IL-7, can be regulated by IL-7 itself, as well as IFN-γ and IL-21. Additionally, the transcriptional repressor Gfi-1b enhances the proliferative responsiveness of B cell lines to IL-7. We demonstrated that these molecules act together to form a SOCS-mediated "rheostat" that controls the level of IL-7R signaling in developing murine B lineage cells.
    Preview · Article · Aug 2011 · The Journal of Immunology

Publication Stats

9k Citations
1,129.19 Total Impact Points

Institutions

  • 1990-2015
    • University of Toronto
      • • Department of Immunology
      • • Department of Medical Biophysics
      Toronto, Ontario, Canada
  • 2008-2014
    • University Health Network
      Toronto, Ontario, Canada
  • 2000-2004
    • The Princess Margaret Hospital
      Toronto, Ontario, Canada
  • 1990-2003
    • Ontario Institute for Cancer Research
      Toronto, Ontario, Canada
  • 1997
    • Samuel Lunenfeld Research Institute
      Toronto, Ontario, Canada
  • 1994
    • Newton-Wellesley Hospital
      Boston, Massachusetts, United States
  • 1979-1980
    • Memorial Sloan-Kettering Cancer Center
      New York, New York, United States