Bruno Cogliati

University of São Paulo, San Paulo, São Paulo, Brazil

Are you Bruno Cogliati?

Claim your profile

Publications (66)182.03 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Innate immunity contributes effectively to the development of alcoholic liver disease (ALD). In special, the activation of the complement system is involved in the pathogenesis of this disease. Here we investigated the contribution of complement C5 protein to the establishment and maintenance of ALD. Eight- to ten-week-old B6C5+ and B6C5− male mice were fed with high fat diet (HFD) only or the same diet containing equicaloric supplements of ethanol (HFDE) or maltodextrin (HFDM) for 10 weeks. Serum parameters of liver function as alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, albumin, glucose, triglycerides (TG) and cholesterol were evaluated. Liver tissue samples were collected for histopathological analysis, lipid extraction (TG and cholesterol), cytokines (TNF-α, IL-6, IL-1β, IL-10, IL-12, IL-17, IFN-γ, TGF-β) measurement and NO production. We observed that B6C5− mice HFDE-fed accumulated more liver cholesterol and TG, increased liver IL-17 and IL-10 levels and reduced liver TGF-β levels when compared to HFD-fed mice. We also observed that serum AST, AP and albumin were increased in B6C5− mice. Liver IL-1β, IL-6, IL-12 and IFN-γ were decreased in B6C5− mice independently of diet. We conclude that C5 acts in the control of serum TG and cholesterol, liver cholesterol deposition, liver homeostasis and C5 promotes a pro-inflammatory liver environment in our mouse model of ALD.
    No preview · Article · Feb 2016 · Immunobiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Connexin32 is the building block of hepatocellular gap junctions, which control direct intercellular communication and thereby act as goalkeepers of liver homeostasis. This study was set up to investigate whether connexin32 is involved in hepatotoxicity induced by the analgesic and antipyretic drug acetaminophen. To this end, whole body connexin32 knock-out mice were overdosed with acetaminophen followed by sampling at different time points within a 24-h time frame. Evaluation was done based upon a series of clinically and mechanistically relevant read-outs, including protein adduct formation, histopathological examination, measurement of alanine aminotransferase activity, cytokine production, levels of reduced and oxidized glutathione and hepatic protein amounts of proliferating cell nuclear antigen. In essence, it was found that genetic ablation of connexin32 has no influence on several key events in acetaminophen-induced hepatotoxicity, including cell death, inflammation or oxidative stress, yet it does affect production of protein adducts as well as proliferating cell nuclear antigen steady-state protein levels. This outcome is not in line with previous studies, which are contradicting on their own, as both amplification and alleviation of this toxicological process by connexin32 have been described. This could question the suitability of the currently available models and tools to investigate the role of connexin32 in acetaminophen-triggered hepatotoxicity.
    No preview · Article · Jan 2016 · Toxicology mechanisms and methods
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Case summary We describe the case of a 1-year-old male Persian cat diagnosed with congenital hepatic fibrosis (CHF) associated with renal polycystic disease and, for the first time, we have shown that there was no C >A mutation in exon 29 of PKD1 (polycystic kidney disease 1). The cat presented with a history of chronic weight loss, anorexia, vomiting, depression and lethargy, with profuse salivation and ascites on clinical examination. A mild elevation in liver-associated plasma enzymes suggested a hepatic disease. Owing to the cat’s deteriorating condition, it was euthanized. During necropsy, the liver was found to be enlarged, firm and reddish, and the kidney had multiple small cortical cysts. Immunohistochemistry revealed that bile duct cells and epithelial cells of renal cysts showed positive immunoreactivity to keratin 19. Collagen fibers surrounding bile ducts within portal areas demonstrated reactivity to type IV collagen antibody, confirming the congenital nature of the process. A diagnosis of ductal plate malformation consistent with CHF associated with polycystic kidney in a young Persian cat was made. Interestingly, genetic testing revealed a wild-type sequence at position 3284 in exon 29 of PKD1.
    Full-text · Article · Dec 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study sought to determine the role of physical training (PT) on body weight (BW), energy balance, histological markers of nonalcoholic fatty liver disease (NAFLD) and metabolic gene expression in the liver of ob/ob mice. Adult male ob/ob mice were assigned into groups sedentary (S; n = 8) and trained (T; n = 9). PT consisted in running sessions of 60 min at 60% of maximal speed conducted five days per week for eight weeks. BW of S group was higher from the 4(th) to 8(th) week of PT compared to their own BW at the beginning of the experiment. PT decreased daily food intake and increased resting oxygen consumption and energy expenditure in T group. No difference was observed in respiratory exchange ratio, but the rates of carbohydrate and lipids oxidation, and maximal running capacity were greater in T than S group. Both groups showed liver steatosis but not inflammation. PT increased CPT1a and SREBP1c mRNA expression in T group, but did not change MTP, PPAR-α, PPAR-γ, and NFKB mRNA expression. In conclusion, PT prevented body weight gain in ob/ob mice by inducing negative energy balance and increased physical exercise tolerance. However, PT did not change inflammatory gene expression and failed to prevent liver steatosis possible due to an upregulation in the expression of SREBP1c transcription factor. These findings reveal that PT has positive effect on body weight control but not in the liver steatosis in a leptin deficiency condition.
    Full-text · Article · Sep 2015 · International Journal of Clinical and Experimental Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hepatotoxicity, including drug-induced liver injury, is frequently accompanied by cell death. The latter is typically driven by apoptosis or necrosis, which substantially differ based upon biochemical and morpho- logical criteria. This chapter describes two commonly used methods to probe apoptotic and necrotic activi- ties in adherent monolayer cultures of primary hepatocytes. The apoptosis assay uses a prototypical substrate of caspase 3, the main executor of apoptotic cell death, which can be cleaved, yielding a product that can be measured fl uorimetrically. The second assay relies on the disruption of the cell plasma mem- brane, which typically occurs in necrotic cell death and that results in the extracellular release of cytoplas- mic enzymes, such as lactate dehydrogenase. The latter can be indirectly assessed by spectrophotometrically measuring the consumption of reduced nicotinamide adenine dinucleotide.
    Full-text · Chapter · Aug 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-alcoholic fatty liver disease encompasses a spectrum of liver diseases, including simple steatosis, steatohepatitis, liver fibrosis and cirrhosis and hepatocellular carcinoma. Non-alcoholic fatty liver disease is currently the most dominant chronic liver disease in Western countries due to the fact that hepatic steatosis is associated with insulin resistance, type 2 diabetes mellitus, obesity, metabolic syndrome and drug-induced injury. A variety of chemicals, mainly drugs, and diets is known to cause hepatic steatosis in humans and rodents. Experimental non-alcoholic fatty liver disease models rely on the application of a diet or the administration of drugs to laboratory animals or the exposure of hepatic cell lines to these drugs. More recently, genetically modified rodents or zebrafish have been introduced as non-alcoholic fatty liver disease models. Considerable interest now lies in the discovery and development of novel non-invasive biomarkers of non-alcoholic fatty liver disease, with specific focus on hepatic steatosis. Experimental diagnostic biomarkers of non-alcoholic fatty liver disease, such as (epi)genetic parameters and '-omics'-based read-outs are still in their infancy, but show great promise.. In this paper, the array of tools and models for the study of liver steatosis is discussed. Furthermore, the current state-of-art regarding experimental biomarkers such as epigenetic, genetic, transcriptomic, proteomic and metabonomic biomarkers will be reviewed. Copyright © 2015. Published by Elsevier Ltd.
    Full-text · Article · Jul 2015 · Progress in Lipid Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Connexin proteins are abundantly present in the digestive system. They primarily form gap junctions, which control the intercellular exchange of critical homeostasis regulators. By doing so, gap junctions drive a plethora of gastrointestinal and hepatic functional features, including gastric and gut motility, gastric acid secretion, intestinal innate immune defense, xenobiotic biotransformation, glycogenolysis, bile secretion, ammonia detoxification and plasma protein synthesis. In the last decade, it has become clear that connexin hemichannels, which are the structural precursors of gap junctions, also provide a pathway for cellular communication, namely between the cytosol and the extracellular environment. Although merely pathological functions have been described, some physiological roles have been attributed to connexin hemichannels, in particular in the modulation of colonic motility. This equally holds true for cellular channels composed of pannexins, connexin-like proteins recently identified in the intestine and the liver, which have become acknowledged key players in inflammatory processes and that have been proposed to control colonic motility, secretion and blood flow.
    Full-text · Article · Jun 2015 · Cellular and Molecular Life Sciences CMLS
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatic fibrosis is a wound healing response to insults and as such affects the entire world population. In industrialized countries, the main causes of liver fibrosis include alcohol abuse, chronic hepatitis virus infection and non-alcoholic steatohepatitis. A central event in liver fibrosis is the activation of hepatic stellate cells, which is triggered by a plethora of signaling pathways. Liver fibrosis can progress into more severe stages, known as cirrhosis, when liver acini are substituted by nodules, and further to hepatocellular carcinoma. Considerable efforts are currently devoted to liver fibrosis research, not only with the goal of further elucidating the molecular mechanisms that drive this disease, but equally in view of establishing effective diagnostic and therapeutic strategies. The present paper provides a state-of-the-art overview of in vivo and in vitro models used in the field of experimental liver fibrosis research.
    No preview · Article · Jun 2015 · Archives of Toxicology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: & aims: Few clinical trials have addressed the potential benefits of omega-3 polyunsaturated fatty acids (PUFAs) on non-alcoholic steatohepatitis (NASH). We evaluated the effects of supplementation with omega-3 PUFAs from flaxseed and fish oils in patients with biopsy-proven NASH. Patients received three capsules daily, each containing 0.315 g of omega-3 PUFAs (64% alpha-linolenic [ALA], 16% eicosapentaenoic [EPA], and 21% docosahexaenoic [DHA] acids; n-3 group, n = 27) or mineral oil (placebo group, n = 23). Liver biopsies were evaluated histopathologically by the NASH activity score (NAS). Plasma levels of omega-3 PUFAs were assessed as a marker of intake at baseline and after 6 months of treatment. Secondary endpoints included changes in plasma biochemical markers of lipid metabolism, inflammation, and liver function at baseline and after 3 and 6 months of treatment. At baseline, NAS was comparable between the groups (p = 0.98). After intervention with omega-3 PUFAs, plasma ALA and EPA levels increased (p ≤ 0.05). However in the placebo group, we also observed increased EPA and DHA (p ≤ 0.05), suggesting an off-protocol intake of PUFAs. NAS improvement/stabilization was correlated with increased ALA in the n-3 group (p = 0.02) and with increased EPA (p = 0.04) and DHA (p = 0.05) in the placebo group. Triglycerides were reduced after 3 months in the n-3 group compared to baseline (p = 0.01). In NASH patients, the supplementation of omega-3 PUFA from flaxseed and fish oils significantly impacts on plasma lipid profile of patients with NASH. Plasma increase of these PUFAs was associated with better liver histology. (ID 01992809). Copyright © 2015 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
    Full-text · Article · May 2015 · Clinical nutrition (Edinburgh, Scotland)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gap junctions, which mediate intercellular communication, are key players in digestive homeostasis. They are also frequently involved in gastrointestinal and liver pathology. This equally holds true for connexin (Cx) hemichannels, the structural precursors of gap junctions, and pannexin (Panx) channels, Cx-like proteins assembled in a hemichannel configuration. Both Cx hemichannels and Panx channels facilitate extracellular communication and drive a number of deteriorative processes, such as cell death and inflammation. Cxs, Panxs, and their channels underlie a wide spectrum of gastrointestinal and liver diseases, including gastritis and peptic ulcer disease, inflammatory intestinal conditions, acute liver failure, cholestasis, hepatitis and steatosis, liver fibrosis and cirrhosis, infectious gastrointestinal pathologies, and gastrointestinal and liver cancer. This could open promising perspectives for the characterization of new targets and biomarkers for therapeutic and diagnostic clinical purposes in the area of gastroenterology and hepatology. Copyright © 2015 Elsevier Inc. All rights reserved.
    Full-text · Article · May 2015 · Translational Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hebanthe paniculata roots (formerly Pfaffia paniculata and popularly known as Brazilian ginseng) show antineoplastic, chemopreventive, and antiproliferative properties. Functional properties of these roots and their extracts are usually attributed to the pfaffosidic fraction, which is composed mainly by pfaffosides A-F. However, the therapeutic potential of this fraction in cancer cells is not yet entirely understood. This study aimed to analyze the antitumoral effects of the purified pfaffosidic fraction or saponinic fraction on the human hepatocellular carcinoma HepG2 cell line. Cellular viability, proliferation, and apoptosis were evaluated, respectively, by MTT assay, BrdU incorporation, activated caspase-3 immunocytochemistry, and DNA fragmentation assay. Cell cycle was analyzed by flow cytometry and the cell cycle-related proteins were analyzed by quantitative PCR and Western blot. The cells exposed to pfaffosidic fraction had reduced viability and cellular growth, induced G2/M at 48 h or S at 72 h arrest, and increased sub-G1 cell population via cyclin E downregulation, p27(KIP1) overexpression, and caspase-3-induced apoptosis, without affecting the DNA integrity. Antitumoral effects of pfaffosidic fraction from H. paniculata in HepG2 cells originated by multimechanisms of action might be associated with cell cycle arrest in the S phase, by CDK2 and cyclin E downregulation and p27(KIP1) overexpression, besides induction of apoptosis through caspase-3 activation.
    Full-text · Article · May 2015 · Evidence-based Complementary and Alternative Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cellular channels composed of connexin 43 are known to act as key players in the life cycle of the skin and consequently to underlie skin repair. This study was specifically set up to investigate the suite of molecular mechanisms driven by connexin 43-based channels on wound healing. To this end, a battery of parameters, including re-epithelialization, neovascularization, collagen deposition and extracellular matrix remodeling, was monitored over time during experimentally induced skin repair in heterozygous connexin 43 knockout mice. It was found that connexin 43 deficiency accelerates re-epithelialization and wound closure, increases proliferation and activation of dermal fibroblasts, and enhances the expression of extracellular matrix remodeling mediators. These data substantiate the notion that connexin 43 may represent an interesting therapeutic target in dermal wound healing. Copyright © 2015 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.
    Full-text · Article · Apr 2015 · Journal of dermatological science
  • Source

    Full-text · Article · Apr 2015 · Journal of Hepatology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background and Aims: Pannexins (Panx) constitute a relatively new family of transmembrane proteins that form channels linking the cytoplasmic compartment with the extracellular environment. The pannexin family consists of 3 members of which Panx1 is expressed in the liver. It is well-known that Panx1 plays a key role in innate immunity by facilitating activation of the inflammasome. Recently, Panx1-mediated inflammation was found to be involved in non-alcoholic steatohepatitis in mouse. In the present study, it is investigated whether this also holds true for acute liver failure in casu triggered by acetaminophen. Methods: Mice were overdosed with acetaminophen followed by treatment with the Panx1 channel inhibitor 10Panx1 after 1.5 hours. Sampling was performed 24 hours after acetaminophen administration. Evaluation of the effect of Panx1 channel inhibition was based on a number of clinically relevant read-outs, including assessment of alanine and aspartate aminotransferase serum levels as well as histopathological examination of liver tissue with quantification of cell death. Inflammation was studied by measurement of cytokine levels in liver and serum. Results: All parameters measured indicate a significant reduction of liver damage, including cell death and inflammation, upon treatment of acetaminophen-intoxicated mice with 10Panx1. Conclusions: The results of this study demonstrate the clinical potential of Panx1 channel inhibition as a therapeutic strategy in the treatment of acetaminophen-induced acute liver failure.
    No preview · Article · Apr 2015 · Journal of Hepatology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Liver fibrosis occurring as an outcome of non-alcoholic steatohepatitis (NASH) can precede the development of cirrhosis. We investigated the effects of sorafenib in preventing liver fibrosis in a rodent model of NASH. Adult Sprague-Dawley rats were fed a choline-deficient high-fat diet and exposed to diethylnitrosamine for 6 weeks. The NASH group (n=10) received vehicle and the sorafenib group (n=10) received 2.5 mg·kg-1·day-1 by gavage. A control group (n=4) received only standard diet and vehicle. Following treatment, animals were sacrificed and liver tissue was collected for histologic examination, mRNA isolation, and analysis of mitochondrial function. Genes related to fibrosis (MMP9, TIMP1, TIMP2), oxidative stress (HSP60, HSP90, GST), and mitochondrial biogenesis (PGC1α) were evaluated by real-time quantitative polymerase chain reaction (RT-qPCR). Liver mitochondrial oxidation activity was measured by a polarographic method, and cytokines by enzyme-linked immunosorbent assay (ELISA). Sorafenib treatment restored mitochondrial function and reduced collagen deposition by nearly 63% compared to the NASH group. Sorafenib upregulated PGC1α and MMP9 and reduced TIMP1 and TIMP2 mRNA and IL-6 and IL-10 protein expression. There were no differences in HSP60, HSP90 and GST expression. Sorafenib modulated PGC1α expression, improved mitochondrial respiration and prevented collagen deposition. It may, therefore, be useful in the treatment of liver fibrosis in NASH.
    Full-text · Article · Feb 2015 · Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas / Sociedade Brasileira de Biofisica ... [et al.]
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Connexins are proteins that form gap junctions. Perturbations in the cell membrane reportedly promote changes in the expression profile of connexins. Electroporation promotes destabilization by applying electrical pulses, and this procedure is used in electrochemotherapy and gene therapy, among others. This in vitro work aimed to study the interference of electroporation on the expression profile of GJB2 (Cx26 gene) and Connexin 26 in melanoma cell line B16/BL6. The techniques of immunocytochemistry, Western blot, and real-time PCR were used. After electroporation, cells showed a transient decrease in GJB2 mRNA. The immunostaining of Cx26 showed no noticeable change after electroporation at different time points. However, Western blot showed a significant reduction in Cx26 30 min after electroporation. Our results showed that electroporation interferes transiently in the expression of Connexin 26 in melanoma and are consistent with the idea that electroporation is a process of intense stress that promotes cell homeostatic imbalance and results in disruption of cell physiological processes such as transcription and translation.
    Full-text · Article · Oct 2014 · Journal of Membrane Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Very few studies have evaluated the expression of homeobox A10 (HOXA10) and steroid (estrogen and progesterone) receptors exclusively in deep endometriosis. Conclusions drawn from studies evaluating peritoneal and ovarian endometriosis are usually generalized to explain the pathogenesis of the disease as a whole. We aimed to evaluate the expression of HOXA10, estrogen receptor α (ER-α), progesterone receptor (PR), and PR-B in rectosigmoid endometriosis (RE), a typical model of deep disease. Methods: We used RE samples from 18 consecutive patients to construct tissue microarray blocks. Nine patients each were operated during the proliferative and secretory phases of the menstrual cycle. We quantified the expressions of proteins by immunohistochemistry using the modified Allred score. Result: The HOXA10 was expressed in the stroma of nodules during the secretory phase in 5 of the 18 patients. Expression of ER-α (in 16 of 18 patients), PR (in 17 of 18 patients), and PR-B (17 of 18 patients) was moderate to strong in the glands and stroma of nodules during both phases. Expression of both PR (P = .023) and PR-B (P = .024) was significantly greater during the secretory phase. Conclusion: The HOXA10 is expressed in RE, where it likely imparts the de novo identity of endometriotic lesions. The ER-α, PR, and PR-B are strongly expressed in RE, which differs from previous studies investigating peritoneal and ovarian lesions. This suggests different routes of pathogenesis for each of the 3 types of endometriosis.
    No preview · Article · Sep 2014 · Reproductive sciences (Thousand Oaks, Calif.)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Articular cartilage, because of its avascular nature, has little capacity for spontaneous healing, and tissue engineering approaches, employing different biomaterials and cells, are under development. Among the investigated biomaterials are the chitosan-based hydrogels. Although thoroughly studied in other mammalian species, studies are scarce in equines. So, the aim of the present study was to investigate the biocompatibility of chitosan-GP in horse joints submitted to high mechanical loads.ResultsAn osteochondral defect was created by arthroscopy in the medial surface of lateral trochlea of talus of left or right leg, randomly selected, from six healthy geldings. The defect was filled up with chitosan-GP. The contralateral joint received an identical defect with no implant. The chondral fragment removed to produce the defect was collected, processed and used as the ¿Initial¿ sample (normal cartilage) for histology, immunohistochemistry, and metabolic labelling of PGs. After 180 days, the repair tissues were collected, and also analyzed. At the end of the experiment (180 days after lesion), the total number of cells per field in repair tissues was equal to control, and macrophages and polymorphonuclear cells were not detected, suggesting that no significant inflammation was present. These cells were able to synthesize type II collagen and proteoglycans (PGs). Nevertheless, the cell population in these tissues, both in presence of chitosan-GP and in untreated controls, were heterogeneous, with a lower proportion of type II collagen-positives cells and some with a fibroblastic aspect. Moreover, the PGs synthesized in repair tissues formed in presence or absence of chitosan-GP were similar to those of normal cartilage. However, the chitosan-GP treated tissue had an disorganized appearance, and blood vessels were present.Conclusions Implanted chitosan-GP did not evoke an important inflammatory reaction, and permitted cell growth. These cells were able to synthesize type II collagen and PGs similar to those synthesized in normal cartilage and in healing tissue without implant, indicating its chondrocyte nature.
    Full-text · Article · Aug 2014 · BMC Veterinary Research
  • Source

    Preview · Article · Aug 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Melanoma is one of the most common skin neoplasms in humans and dogs. The tumor microenvironment in melanoma comprises cancer cells and stromal cells that interact to accelerate tumor progression. Several prognostic markers for melanomas have been studied in many human tumors, including fibroblast-specific protein 1 (S100A4). S100A4 is a member of the S100 family of calcium-binding proteins in stromal cells.Hypothesis/objectives: The objective of this study was to describe the immunohistochemical patterns of S100A4 in stroma and neoplastic cells of canine skin melanomas and correlate them with some histological parameters. Animals and Methods: Forty-eight samples (38 pigmented and 10 non-pigmented melanomas) were first selected and their nature confirmed using S100, Melan A and vimentin. All cases were examined by immunohistochemistry using S100A4 to correlate expression, histotype, and level of invasion.Results: All the tumors, including 10 non-pigmented, were positive for S100, Melan A, vimentin and negative for cytokeratin AE1/AE3 (consistent with melanomas). The 48 melanomas were classified as epithelioid (n = 21), spindle (n = 14), and mixed (n = 13). S100A4 was preferentially expressed in epithelioid and spindle cell types compared with mixed melanomas and S100A4 expression was not associated with level of invasion (Clark's levels IV to V).Conclusion: S100A4 expression in melanoma samples varied among histotypes but not between levels of invasion.
    No preview · Article · Jul 2014 · The Veterinary quarterly

Publication Stats

159 Citations
182.03 Total Impact Points

Institutions

  • 2008-2015
    • University of São Paulo
      • • Departamento de Psicologia
      • • Department of Pathology (Sao Paulo)
      San Paulo, São Paulo, Brazil
  • 2013
    • Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo
      San Paulo, São Paulo, Brazil