A. S. Hales

Atacama Large Millimeter/submillimeter Array, Antofagasta, Antofagasta, Chile

Are you A. S. Hales?

Claim your profile

Publications (41)178.06 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have obtained ALMA Band 7 observations of the FU Ori outburst system at 0.6"x0.5" resolution to measure the link between the inner disk instability and the outer disk through sub-mm continuum and molecular line observations. Our observations detect continuum emission which can be well modeled by two unresolved sources located at the position of each binary component. The interferometric observations recover the entire flux reported in previous single-dish studies, ruling out the presence of a large envelope. Assuming that the dust is optically thin, we derive disk dust masses of $2\times 10^{-4}$M$_{\odot}$ and $8\times 10^{-5}$M$_{\odot}$, for the north and south components respectively. We place limits on the disks' radii of $r<$45 AU. We report the detection of molecular emission from $^{12}$CO(3-2), HCO$^{+}$(4-3) and from HCN(4-3). The $^{12}$CO appears widespread across the two binary components, and is slightly more extended than the continuum emission. The denser gas tracer HCO$^{+}$ peaks close to the position of the southern binary component, while HCN appears peaked at the position of the northern component. This suggests that the southern binary component is embedded in denser molecular material, consistent with previous studies that indicate a heavily reddened object. At this angular resolution any interaction between the two unresolved disk components cannot be disentangled. Higher resolution images are vital to understanding the process of star formation via rapid accretion FU Ori-type episodes.
    Preview · Article · Sep 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The recent ALMA observations of the disc surrounding HL Tau reveal a very complex dust spatial distribution. We present a radiative transfer model accounting for the observed gaps and bright rings as well as radial changes of the emissivity index. We find that the dust density is depleted by at least a factor 10 in the main gaps compared to the surrounding rings. Ring masses range from 10-100 M$_{\oplus}$ in dust, and, we find that each of the deepest gaps is consistent with the removal of up to 40 M$_{\oplus}$ of dust. If this material has accumulated into rocky bodies, these would be close to the point of runaway gas accretion. Our model indicates that the outermost ring is depleted in millimetre grains compared to the central rings. This suggests faster grain growth in the central regions and/or radial migration of the larger grains. The morphology of the gaps observed by ALMA - well separated and showing a high degree of contrast with the bright rings over all azimuths - indicates that the millimetre dust disc is geometrically thin (scale height $\approx$ 1 au at 100 au) and that a large amount of settling of large grains has already occurred. Assuming a standard dust settling model, we find that the observations are consistent with a turbulent viscosity coefficient of a few $10^{-4}$. We estimate the gas/dust ratio in this thin layer to be of the order of 5 if the initial ratio is 100. The HCO$^+$ and CO emission is consistent with gas in Keplerian motion around a 1.7 $M_\odot$ star at radii from $\leq 10 - 120\,$au.
    Preview · Article · Aug 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0 ''.075 (10 AU) to 0 ''.025 (3.5 AU), revealing an astonishing level of detail in the circumstellar disk surrounding the young solar analog HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46 degrees.72 +/- 0 degrees.05) and position angle (+138 degrees.02 +/- 0 degrees.07).We obtain a high-fidelity image of the 1.0 mm spectral index (alpha), which ranges from alpha similar to 2.0 in the optically thick central peak and two brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are not devoid of emission, and we estimate a grain emissivity index of 0.8 for the innermost dark ring and lower for subsequent dark rings, consistent with some degree of grain growth and evolution. Additional clues that the rings arise from planet formation include an increase in their central offsets with radius and the presence of numerous orbital resonances. At a resolution of 35 AU, we resolve the molecular component of the disk in HCO+. (1-0) which exhibits a pattern over LSR velocities from 2-12 km s(-1) consistent with Keplerian motion around a similar to 1.3 M-circle dot star, although complicated by absorption at low blueshifted velocities. We also serendipitously detect and resolve the nearby protostars XZ Tau (A/B) and LkH alpha 358 at 2.9 mm.
    Full-text · Article · Jul 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present ALMA (Cycle 0) band-6 and band-3 observations of the transition disk Sz 91. The disk inclination and position angle are determined to be i = 49.5◦ ±3.5◦ and PA = 18.2◦ ±3.5◦ and the dusty and gaseous disk are detected up to ∼ 220 au and ∼ 400 au from the star, respectively. Most importantly, our continuum observations indicate that the cavity size in the mm-sized dust distribution must be ∼ 97 au in radius, the largest cavity observed around a T Tauri star. Our data clearly confirms the presence of 12 CO (2-1) well inside the dust cavity. Based on these observational constrains we developed a disk model that simultaneously accounts for the 12CO and continuum observations (i.e., gaseous and dusty disk). According to our model, most of the millimeter emission comes from a ring located between 97 and 140 au. We also find that the dust cavity is divided into an innermost region largely depleted of dust particles ranging from the dust sublimation radius up to 85 au, and a second, moderately dust-depleted region, extending from 85 to 97 au. The extremely large size of the dust cavity, the presence of gas and small dust particles within the cavity and the accretion rate of Sz 91 are consistent with the formation of multiple (giant) planets.
    Full-text · Article · May 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is thought that planetary mass companions may form through gravitational disk instabilities or core accretion. Identifying such objects in the process of formation would provide the most direct test for the competing formation theories. One of the most promising candidates for a planetary mass object still in formation is the third object in the FWTau system. We here present ALMA cycle 1 observations confirming the recently published 1.3 mm detection of a dust disk around this third object and present for the first time a clear detection of a single peak 12CO(2-1) line, providing direct evidence for the simultaneous existence of a gas disk. We perform radiative transfer modeling of the third object in FW Tau and find that current observations are consistent with a planetary mass object embedded in a disk which is externally irradiated by the binary companion and seen at an inclination of i<15 deg. However, we also find that a near edge-on disk around a more massive substellar object can explain the observations if cloud contamination causes the single peak shape of the 12CO(2-1) line. Although this possibility appears less likely, further observations with ALMA, aiming for the detection of less contaminated gas lines, are required to conclusively unveil the nature of the third object in FWTau.
    No preview · Article · Apr 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.
    Full-text · Article · Apr 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to make accurate images with resolutions of tens of milliarcseconds, which at submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop and test this capability, a Long Baseline Campaign (LBC) was carried out from September to late November 2014, culminating in end-to-end observations, calibrations, and imaging of selected Science Verification (SV) targets. This paper presents an overview of the campaign and its main results, including an investigation of the short-term coherence properties and systematic phase errors over the long baselines at the ALMA site, a summary of the SV targets and observations, and recommendations for science observing strategies at long baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also compared to VLA 43 GHz results, demonstrating an agreement at a level of a few percent. As a result of the extensive program of LBC testing, the highly successful SV imaging at long baselines achieved angular resolutions as fine as 19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now possible, and opens up new parameter space for submm astronomy.
    Full-text · Article · Apr 2015 · The Astrophysical Journal Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Atacama Large Millimeter/submillimeter Array (ALMA) observations from the 2014 Long Baseline Campaign in dust continuum and spectral line emission from the HL Tau region. The continuum images at wavelengths of 2.9, 1.3, and 0.87 mm have unprecedented angular resolutions of 0.075 arcseconds (10 AU) to 0.025 arcseconds (3.5 AU), revealing an astonishing level of detail in the circumstellar disk surrounding the young solar analogue HL Tau, with a pattern of bright and dark rings observed at all wavelengths. By fitting ellipses to the most distinct rings, we measure precise values for the disk inclination (46.72pm0.05 degrees) and position angle (+138.02pm0.07 degrees). We obtain a high-fidelity image of the 1.0 mm spectral index ($\alpha$), which ranges from $\alpha\sim2.0$ in the optically-thick central peak and two brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are not devoid of emission, we estimate a grain emissivity index of 0.8 for the innermost dark ring and lower for subsequent dark rings, consistent with some degree of grain growth and evolution. Additional clues that the rings arise from planet formation include an increase in their central offsets with radius and the presence of numerous orbital resonances. At a resolution of 35 AU, we resolve the molecular component of the disk in HCO+ (1-0) which exhibits a pattern over LSR velocities from 2-12 km/s consistent with Keplerian motion around a ~1.3 solar mass star, although complicated by absorption at low blue-shifted velocities. We also serendipitously detect and resolve the nearby protostars XZ Tau (A/B) and LkHa358 at 2.9 mm.
    Full-text · Article · Mar 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum images of the asteroid 3 Juno obtained with an angular resolution of 0.042 arcseconds (60 km at 1.97 AU). The data were obtained over a single 4.4 hr interval, which covers 60% of the 7.2 hr rotation period, approximately centered on local transit. A sequence of ten consecutive images reveals continuous changes in the asteroid's profile and apparent shape, in good agreement with the sky projection of the three-dimensional model of the Database of Asteroid Models from Inversion Techniques. We measure a geometric mean diameter of 259pm4 km, in good agreement with past estimates from a variety of techniques and wavelengths. Due to the viewing angle and inclination of the rotational pole, the southern hemisphere dominates all of the images. The median peak brightness temperature is 215pm13 K, while the median over the whole surface is 197pm15 K. With the unprecedented resolution of ALMA, we find that the brightness temperature varies across the surface with higher values correlated to the subsolar point and afternoon areas, and lower values beyond the evening terminator. The dominance of the subsolar point is accentuated in the final four images, suggesting a reduction in the thermal inertia of the regolith at the corresponding longitudes, which are possibly correlated to the location of the putative large impact crater. These results demonstrate ALMA's potential to resolve thermal emission from the surface of main belt asteroids, and to measure accurately their position, geometric shape, rotational period, and soil characteristics.
    Full-text · Article · Mar 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present initial results of very high resolution Atacama Large Millimeter/submillimeter Array (ALMA) observations of the $z$=3.042 gravitationally lensed galaxy HATLAS J090311.6+003906 (SDP.81). These observations were carried out using an extended configuration as part of Science Verification for the 2014 ALMA Long Baseline Campaign, with baselines of up to 15 km. We present continuum imaging at 151, 236 and 290 GHz, at angular resolutions as fine as 23 milliarcseconds (mas; corresponding to an un-magnified spatial scale of 180 pc at z=3.042). The ALMA images clearly show two main gravitational arc components with emission tracing a radius of 1.5". We also present imaging of CO(10-9), CO(8-7), CO(5-4) and H2O line emission. The CO data has an angular resolution of 170 mas and the emission is found to broadly trace the gravitational arc structures. We detect H2O line emission but only using the shortest baselines. The ALMA continuum and spectral line fluxes are consistent with previous Plateau de Bure Interferometer and Submillimeter Array observations despite the increase in angular resolution. Finally, we detect weak unresolved continuum emission at all three observed frequencies from a position that is spatially coincident with the centre of the foreground lensing galaxy.
    Full-text · Article · Mar 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ALMA provides the necessary spatial, temporal and spectral resolution to explore central questions in contemporary solar physics with potentially far-reaching implications for stellar atmospheres and plasma physics. It can uniquely constraint the thermal and magnetic field structure in the solar chromosphere with measurements that are highly complementary to simultaneous observations with other ground-based and space-borne instruments. Here, we highlight selected science cases.
    Full-text · Article · Feb 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inner cavities and annular gaps in circumstellar disks are possible signposts of giant planet formation. The young star HD 142527 hosts a massive protoplanetary disk with a large cavity that extends up to 140 au from the central star, as seen in continuum images at infrared and millimeter wavelengths. Estimates of the survival of gas inside disk cavities are needed to discriminate between clearing scenarios. We present a spatially and spectrally resolved carbon monoxide isotopologue observations of the gas-rich disk HD 142527, in the J=2-1 line of 12CO, 13CO and C18O, obtained with the Atacama Large Millimeter Array (ALMA). We detect emission coming from inside the dust-depleted cavity in all three isotopologues. Based on our analysis of the gas in the dust cavity, the 12CO emission is optically thick, while 13CO and C18O emission are both optically thin. The total mass of residual gas inside the cavity is about 1.5-2 Jupiter masses. We model the gas with an axisymmetric disk model. Our best fit model shows that the cavity radius is much smaller in CO than it is in millimeter continuum and scattered light observations, with a gas cavity that does not extend beyond 105 au (at 3-sigma). The gap wall at its outer edge is diffuse and smooth in the gas distribution, while in dust continuum it is manifestly sharper. The inclination angle, as estimated from the high velocity channel maps, is 28+/-0.5 degrees, higher than in previous estimates, assuming a fix central star mass of 2.2 Solar masses.
    Full-text · Article · Jan 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: HD 142527 is a unique protoplanetary disk in terms of planet formation. Its high accretion rate combined with its huge inner gap and short age make of it an ideal candidate for harboring forming planets. ALMA cycle-0 observations revealed gap crossing gas streams and showed that the millimeter-sized dust particles are distributed in a horse-shoe shape. Here we present our recent H- and Ks-band imaging polarimetry data of HD142527 obtained with VLT/NaCo. By means of polarimetry, we remove most of the stellar light, directly imaging the disk's inner regions. Our observations allow us to constrain the dust properties (size and porosity) on the surface of the outer disk. We also detect two regions of the disk with low emission ("nulls") both in polarized and unpolarized light. Intriguingly, one of these nulls is azimuthally coincident with the maximum of the horse-shoe shape detected by ALMA.
    No preview · Article · Oct 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The INT/WFC Photometric Hα Survey of the Northern Galactic Plane (IPHAS) is a 1800 deg2 imaging survey covering Galactic latitudes |b| < 5° and longitudes ℓ = 30°–215° in the r, i, and Hα filters using the Wide Field Camera (WFC) on the 2.5-m Isaac Newton Telescope (INT) in La Palma. We present the first quality-controlled and globally calibrated source catalogue derived from the survey, providing single-epoch photometry for 219 million unique sources across 92 per cent of the footprint. The observations were carried out between 2003 and 2012 at a median seeing of 1.1 arcsec (sampled at 0.33 arcsec pixel−1) and to a mean 5σ depth of 21.2 (r), 20.0 (i), and 20.3 (Hα) in the Vega magnitude system. We explain the data reduction and quality control procedures, describe and test the global re-calibration, and detail the construction of the new catalogue. We show that the new calibration is accurate to 0.03 mag (root mean square) and recommend a series of quality criteria to select accurate data from the catalogue. Finally, we demonstrate the ability of the catalogue's unique (r − Hα, r − i) diagram to (i) characterize stellar populations and extinction regimes towards different Galactic sightlines and (ii) select and quantify Hα emission-line objects. IPHAS is the first survey to offer comprehensive CCD photometry of point sources across the Galactic plane at visible wavelengths, providing the much-needed counterpart to recent infrared surveys.
    Full-text · Article · Jun 2014 · Monthly Notices of the Royal Astronomical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: DX Cha (HD 104237) is a southern, optically bright Herbig Ae star with an infrared excess, that is part of a small stellar group younger than 5 Myr. We used the APEX and ASTE submillimeter telescopes in Chile to search for continuum and gas emission around this system. Using LABOCA on APEX we detect strong continuum emission around HD104237-A and system component HD104237-E. Our ASTE spectrum detects a double-peaked 12CO(3-2) line profile towards the system, typical of a rotating disk. The new data are used as constraints with MCFOST to produce a disk model that fits the entire SED as well as the observed CO line profile.
    No preview · Article · Jun 2014 · Proceedings of the International Astronomical Union
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We carried out a 12CO(3-2) survey of 52 southern stars with a wide range of IR excesses (L IR/L *) using the single-dish telescopes APEX and ASTE. The main aims were (1) to characterize the evolution of molecular gas in circumstellar disks using L IR/L * values as a proxy of disk dust evolution, and (2) to identify new gas-rich disk systems suitable for detailed study with ALMA. About 60% of the sample (31 systems) have L IR/L * > 0.01, typical of T Tauri or Herbig AeBe stars, and the rest (21 systems) have L IR/L * < 0.01, typical of debris disks. We detect CO(3-2) emission from 20 systems, and 18 (90%) of these have L IR/L * > 0.01. However, the spectra of only four of the newly detected systems appear free of contamination from background or foreground emission from molecular clouds. These include the early-type stars HD 104237 (A4/5V, 116 pc) and HD 98922 (A2 III, 507 pc, as determined in this work), where our observations reveal the presence of CO-rich circumstellar disks for the first time. Of the other detected sources, many could harbor gaseous circumstellar disks, but our data are inconclusive. For these two newly discovered gas-rich disks, we present radiative transfer models that simultaneously reproduce their spectral energy distributions and the 12CO(3-2) line profiles. For both of these systems, the data are fit well by geometrically flat disks, placing them in the small class of non-flaring disks with significant molecular gas reservoirs.
    Full-text · Article · May 2014 · The Astronomical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many stars are surrounded by disks of dusty debris formed in the collisions of asteroids, comets and dwarf planets. But is gas also released in such events? Observations at submm wavelengths of the archetypal debris disk around $\beta$ Pictoris show that 0.3% of a Moon mass of carbon monoxide orbits in its debris belt. The gas distribution is highly asymmetric, with 30% found in a single clump 85AU from the star, in a plane closely aligned with the orbit of the inner planet, $\beta$ Pic b. This gas clump delineates a region of enhanced collisions, either from a mean motion resonance with an unseen giant planet, or from the remnants of a collision of Mars-mass planets.
    Full-text · Article · Mar 2014 · Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the various science cases for building Band 1 receivers as part of ALMA's ongoing Development Program. We describe the new frequency range for Band 1 of 35-52 GHz, a range chosen to maximize the receiver suite's scientific impact. We first describe two key science drivers: 1) the evolution of grains in protoplanetary disks and debris disks, and 2) molecular gas in galaxies during the era of re-ionization. Studies of these topics with Band 1 receivers will significantly expand ALMA's Level 1 Science Goals. In addition, we describe a host of other exciting continuum and line science cases that require ALMA's high sensitivity and angular resolution. For example, ALMA Band 1 continuum data will probe the Sunyaev-Zel'dovich Effect in galaxy clusters, Very Small Grains and spinning dust, ionized jets from young stars, spatial and flaring studies of Sgr A*, the acceleration sites of solar flares, pulsar wind nebulae, radio supernovae, and X-ray binaries. Furthermore, ALMA Band 1 line data will probe chemical differentiation in cloud cores, complex carbon chain molecules, extragalactic radio recombination lines, masers, magnetic fields through Zeeman effect measurements, molecular outflows from young stars, the co-evolution of star formation and active galactic nuclei, and the molecular content of galaxies at z ~ 3. ALMA provides similar to better sensitivities than the JVLA over 35-50 GHz, with differences increasing with frequency. ALMA's smaller antennas and shorter baselines, greater number of baselines, and single-dish capabilities, however, give it a significant edge for observing extended emission, making wide-field maps (mosaics), or attaining high image fidelity, as required by the described science cases.
    No preview · Technical Report · Oct 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The high spatial and line sensitivity of ALMA opens the possibility of resolving emission from molecules in circumstellar disks. With an understanding of physical conditions under which molecules have high abundance, they can be used as direct tracers of distinct physical regions. In particular, DCO+ is expected to have an enhanced abundance within a few Kelvin of the CO freezeout temperature of 19 K, making it a useful probe of the cold disk midplane. We compare ALMA line observations of HD 163296 to a grid of models. We vary the upper- and lower-limit temperatures of the region in which DCO+ is present as well as the abundance of DCO+ in order to fit channel maps of the DCO+ J=5-4 line. To determine the abundance enhancement compared to the general interstellar medium, we carry out similar fitting to HCO+ J=4-3 and H13CO+ J=4-3 observations. ALMA images show centrally peaked extended emission from HCO+ and H13CO+. DCO+ emission lies in a resolved ring from ~110 to 160 AU. The outer radius approximately corresponds to the size of the CO snowline as measured by previous lower resolution observations of CO lines in this disk. The ALMA DCO+ data now resolve and image the CO snowline directly. In the best fitting models, HCO+ exists in a region extending from the 19 K isotherm to the photodissociation layer with an abundance of 3x10^-10 relative to H2. DCO+ exists within the 19-21 K region of the disk with an abundance ratio [DCO+] / [HCO+] = 0.3. This represents a factor of 10^4 enhancement of the DCO+ abundance within this narrow region of the HD 163296 disk. Such a high enhancement has only previously been seen in prestellar cores. The inferred abundances provide a lower limit to the ionization fraction in the midplane of the cold outer disk (approximately greater than 4x10^-10), and suggest the utility of DCO+ as a tracer of its parent molecule H2D+. Abridged
    Preview · Article · Jul 2013 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aims: The aim of this work is to study the structure of the protoplanetary disk surrounding the Herbig Ae star HD 163296. Methods: We have used high-resolution and high-sensitivity ALMA observations of the CO(3-2) emission line and the continuum at 850 microns, as well as the 3- dimensional radiative transfer code MCFOST to model the data presented in this work. Results: The CO(3-2) emission unveils for the first time at sub-millimeter frequencies the vertical structure details of a gaseous disk in Keplerian rotation, showing the back- and the front-side of a flared disk. Continuum emission at 850 microns reveals a compact dust disk with a 240 AU outer radius and a surface brightness profile that shows a very steep decline at radius larger than 125 AU. The gaseous disk is more than two times larger than the dust disk, with a similar critical radius but with a shallower radial profile. Radiative transfer models of the continuum data confirms the need for a sharp outer edge to the dust disk. The models for the CO(3-2) channel map require the disk to be slightly more geometrically thick than previous models suggested, and that the temperature at which CO gas becomes depleted (frozen-out) from the outer regions of the disk midplane is T < 20 K, in agreement with previous studies.
    Preview · Article · Jul 2013 · Astronomy and Astrophysics

Publication Stats

410 Citations
178.06 Total Impact Points

Institutions

  • 2014-2015
    • Atacama Large Millimeter/submillimeter Array
      Antofagasta, Antofagasta, Chile
  • 2007-2015
    • National Radio Astronomy Observatory
      Charlottesville, Virginia, United States
  • 2004-2015
    • University of Santiago, Chile
      • Departamento de Economía
      CiudadSantiago, Santiago Metropolitan, Chile
  • 2005-2006
    • University College London
      • Department of Physics and Astronomy
      Londinium, England, United Kingdom