Jin Liu

KK Women's and Children's Hospital, Tumasik, Singapore

Are you Jin Liu?

Claim your profile

Publications (10)35.19 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: :Recent studies have shown that aflatoxin B1 enhances reactive oxygen species formation and causes oxidative damage, which may ultimately contribute to the cytotoxicity and carcinogenic effect of aflatoxin B1. Ebselen, 2-phenyl-1,2-benzoisoseleazol-3(H)-one, a synthetic seleno-organic compound has been shown to possess glutathione peroxidase-like activity and free radical scavenging ability. Thus present study was designed to investigate the protective effect of ebselen on aflatoxin B1-induced cytotoxicity in primary rat hepatocytes. Aflatoxin B1-induced cytotoxicity and lipid peroxidation were determined by lactate dehydrogenase leakage and malondialdehyde generation, respectively. Intracellular reactive oxygen species level was measured using the fluorescent probe 2′,7′-dichlorofluorescin diacetate, and the intracellular reduced glutathione concentration was determined with a fluorometric method. Ebselen was found to display a dose-dependent protective effect on lactate dehydrogenase leakage and malondialdehyde generation caused by aflatoxin B1 exposure. The results also demonstrate that ebselen efficiently inhibits the intracellular reactive oxygen species formation in aflatoxin B1-treated hepatocytes in a dose and time-dependent manner. It was also noted that ebselen was able to increase the intracellular reduced glutathione concentration, both in the control and in aflatoxin B1-treated hepatocytes. The protection of ebselen against aflatoxin B1 cytotoxicity, however, was not affected by lowering the concentration of intracellular reduced glutathione. The overall data indicate that ebselen possesses a potent protective effect against aflatoxin B1-induced cytotoxicity, and the main mechanism involved in the protection may be its strong capability in inhibiting intracellular reactive oxygen species formation and preventing oxidative damage.
    Preview · Article · Apr 2008 · Pharmacology & Toxicology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have demonstrated that induction of apoptosis is related to the cell growth inhibition potential of Salvia Miltiorrhiza (SM), a traditional herbal medicine. In the present study, we further explore the mechanistic pathway involved in SM-induced apoptosis in human hepatoma HepG2 cells. A rapid decline of intracellular glutathione (GSH) and protein thiol content was found in SM-treated cells. Moreover. SM exposure resulted in mitochondrial dysfunction as demonstrated by: (i) the onset of mitochondrial permeability transition (MPT); (ii) the disruption of mitochondrial membrane potential (MMP); and (iii) the release of cytochrome c from mitochondria into the cytosol. Subsequently, elevated level of intracellular reactive oxygen species (ROS) was observed prior to the onset of DNA fragmentation. However, no caspase-3 cleavage was observed throughout the whole period of SM treatment, while a caspase-3-independent poly(ADP-ribose) polymerase (PARP) cleavage was noted at the late stage in SM-induced apoptosis. Pretreatment of cells with N-acetylcysteine (NAC), the GSH synthesis precursor, conferred complete protection against MMP loss, ROS generation and apoptosis induced by SM. MPT inhibitors, cyclosporin A plus trifluoperazine, partially restored intracellular GSH content, and reduced SM-induced ROS formation and subsequently inhibited cell death. Moreover, antioxidants NAC, deferoxamine and catalase had little effect on GSH depletion and mitochondrial dysfunction, yet still were able to completely protect cells from SM-induced apoptosis. Taken together, our results suggest that SM deplete intracellular thiols, which, in turn, causes MPT and subsequent increase in ROS generation, and eventually apoptotic cell death.
    No preview · Article · Oct 2001 · Life Sciences
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extract of Salvia Miltiorrhiza (SM) has been widely used in traditional Chinese medicine for treating liver diseases. Recent experimental evidence indicates that it has anti-tumor potential. In this study, the effect of SM on alfatoxin B1 (AFB1)-induced hepatocarcinogenesis was investigated in male Fischer 344 rats. AFB1 (40 microg/100 g body wt, by gavage) was administered once a week for 24 weeks. In SM treatment group, rats were given SM (0.25g/100g body wt, 5 days/week by gavage) for a total of 28 weeks, including 4 weeks before and 24 weeks during AFB1 exposure. Results showed that the elevation of serum alanine aminotransferase and aspartate aminotransferase activities due to AFB1 dosing was almost completely abolished by the treatment of SM, indicating that SM could prevent AFB1-induced liver cell injury. It was further observed that SM substantially reduced glutathione S-transferase placenta form (GST-P) positive foci formation and GST-P mRNA expression caused by AFB1, which clearly suggests that SM is effective in preventing AFB1-induced hepatocarcinogenesis. Furthermore, the inhibition on AFB1 hepatocarcinigenesis was associated with a corresponding decrease in AFB1-DNA adducts formation as well as AFB1-induced oxidative DNA damage (8-hydroxydeoxyguanosine) in rat liver. Our results also indicate that the protective effect of SM might be mediated through dual mechanisms: (i) the enhancement of AFB1 detoxification pathway, especially the induction of GST-Yc2 mRNA expression, and (ii) the antioxidant property of SM.
    No preview · Article · Jul 2001 · Life Sciences

  • No preview · Article · Apr 2001 · Annals of the New York Academy of Sciences
  • H M Shen · C F Yang · W X Ding · Jin Liu · C N Ong
    [Show abstract] [Hide abstract]
    ABSTRACT: The exact role of superoxide radicals (O(2)(*)(-)) in apoptosis is still a matter of debate. The main objective of the present study is to evaluate the apoptotic signalling pathway initiated by O(2)(*)(-). The reductive reaction of sodium selenite with glutathione was used as the intracellular O(2)(*)(-)-generating system. When cells were exposed to 5 to 25 microM selenite, a temporal pattern of apoptotic events was observed following the elevation of O(2)(*)(-), in which cytochrome c release and mitochondrial depolarization preceded caspase-3 activation and DNA fragmentation. The simultaneous treatment with N-acetylcysteine and 4-hydroxy-2,2,6, 6-tetramethylpiperidine-N-oxyl markedly reduced O(2)(*)(-) level and suppressed the mitochondrial changes and the downstream apoptotic events. Moreover, pretreatment with cyclosporin A plus trifluoperazine, two mitochondrial permeability transition (MPT) inhibitors, was capable of attenuating O(2)(*)(-)-mediated cytochrome c release and mitochondrial depolarization, and subsequently inhibiting apoptosis. Thus, the present results provide convincing evidence that O(2)(*)(-) generated from the reductive reaction of selenite with GSH is capable of triggering a mitochondria-dependent apoptotic pathway. Such knowledge may not only help to obtain a better understanding of the apoptotic effect of selenite per se, but of the role of O(2)(*)(-) in initiation and execution of apoptosis.
    No preview · Article · Feb 2001 · Free Radical Biology and Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aflatoxin B 1 (AFB 1 ), a potent hepatocarcinogen, enhances ROS formation and causes oxidative DNA damage, which may play a role in its carcinogenicity. We have demonstrated recently that ebselen, an organic selenium compound, protects against the cytotoxicity of AFB 1 through its antioxidant capability. The present study was designed to investigate the effect of ebselen on AFB 1 -induced hepatocarcinogenesis in an animal model. Fischer 344 rats were first treated with either deionized water or ebselen (5 mg/kg, 5 days/week) via gavage for 4 weeks, then given AFB 1 (0.4 mg/kg, gavage, once a week) or AFB 1 plus ebselen (5 mg/kg, 5 days/week) for another 24 weeks. The results showed that the hepatocarcinogenicity of AFB 1 in rats was significantly reduced by ebselen treatment as indicated by a decrease in: (i) serum γ-glutamyl transpeptidase activity; (ii) expression of mRNAs of liver α-fetoprotein and the placental form of glutathione S -transferase (GST-P); and (iii) the area and mean density of staining of liver GST-P foci. Ebselen treatment significantly reduced the formation of hepatic AFB 1 –DNA adducts and 8-hydroxydeoxyguanosine caused by AFB 1 exposure. These findings suggest that ebselen can inhibit the carcinogenicity of AFB 1 . In addition to the reduction of AFB 1 –DNA adduct formation, the protective effect of ebselen against AFB 1 -induced oxidative DNA damage may also, at least in part, contribute to its anticarcinogenic property.
    No preview · Article · Dec 2000 · Carcinogenesis
  • Jin Liu · H.M. Shen · C.N. Ong
    [Show abstract] [Hide abstract]
    ABSTRACT: Salvia miltiorrhiza (SM) is a traditional Chinese herbal medicine, commonly used to treat liver diseases in China for centuries. Several earlier studies have indicated that SM exhibits anti-tumor properties, but its mechanism remains to be elucidated. In this study, we evaluated the molecular mechanism of SM in a human hepatoma cell line, HepG(2). Our results show that SM exerted clear cytotoxic effects, and strongly inhibited the proliferation of HepG(2) cells. It was also observed that SM treatment caused apoptotic cell death as evaluated by: (a), morphological changes by using acridine orange/ethidium bromide staining; (b), DNA fragmentation by TdT-mediated dUTP nick end labeling (TUNEL); and (c), sub-G(1) cell analysis. Furthermore, depletion of intracellular glutathione (GSH) and reduction of mitochondrial membrane potential were found to be involved in the initiation of apoptosis by SM.
    No preview · Article · Jun 2000 · Cancer Letters
  • H.-M. Shen · C.-F. Yang · Jin Liu · C.-N. Ong
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that glutathione, the major intracellular antioxidant, is closely involved in the metabolism and bioactivity of selenium. In the present study, glutathione was demonstrated to play a dual role on selenite (Se)-induced oxidative stress and apoptosis in human hepatoma HepG(2) cells. The experiment was carried out in two different modes to modulate intracellular reduced glutathione (GSH) content. In Mode A (pretreatment), cells were pretreated with N-acetylcysteine (NAC), buthionine sulfoximine (BSO), or GSH prior to Se exposure. In Mode B (simultaneous treatment), cells were treated with Se and NAC, BSO, or GSH simultaneously. It was found that Se-induced oxidative stress and apoptosis are closely related to the intracellular level of GSH. Both the increase and depletion of GSH content significantly enhanced Se-induced oxidative stress and apoptosis in HepG(2) cells. Results from this study clearly demonstrated that GSH has a dual role in the effects of Se on cancer cells: (i) GSH acts as a pro-oxidant, facilitating Se-induced oxidative stress, and (ii) GSH acts as an antioxidant, protecting against Se-induced oxidative stress and apoptosis. Understanding such a unique association between GSH and Se may help to explain the controversy in the literature over the complex relationship between selenium and glutathione, and ultimately the capability of selenium to prevent cancer.
    No preview · Article · May 2000 · Free Radical Biology and Medicine
  • C F Yang · Jin Liu · H M Shen · C N Ong
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have shown that aflatoxin B1 enhances reactive oxygen species formation and causes oxidative damage, which may ultimately contribute to the cytotoxicity and carcinogenic effect of aflatoxin B1. Ebselen, 2-phenyl-1,2-benzoisoseleazol-3(H)-one, a synthetic seleno-organic compound has been shown to possess glutathione peroxidase-like activity and free radical scavenging ability. Thus present study was designed to investigate the protective effect of ebselen on aflatoxin B1-induced cytotoxicity in primary rat hepatocytes. Aflatoxin B1-induced cytotoxicity and lipid peroxidation were determined by lactate dehydrogenase leakage and malondialdehyde generation, respectively. Intracellular reactive oxygen species level was measured using the fluorescent probe 2',7'-dichlorofluorescin diacetate, and the intracellular reduced glutathione concentration was determined with a fluorometric method. Ebselen was found to display a dose-dependent protective effect on lactate dehydrogenase leakage and malondialdehyde generation caused by aflatoxin B1 exposure. The results also demonstrate that ebselen efficiently inhibits the intracellular reactive oxygen species formation in aflatoxin B1-treated hepatocytes in a dose and time-dependent manner. It was also noted that ebselen was able to increase the intracellular reduced glutathione concentration, both in the control and in aflatoxin B1-treated hepatocytes. The protection of ebselen against aflatoxin B1 cytotoxicity, however, was not affected by lowering the concentration of intracellular reduced glutathione. The overall data indicate that ebselen possesses a potent protective effect against aflatoxin B1-induced cytotoxicity, and the main mechanism involved in the protection may be its strong capability in inhibiting intracellular reactive oxygen species formation and preventing oxidative damage.
    No preview · Article · May 2000 · Pharmacology & Toxicology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent findings have suggested that oxidative damage might contribute to the cytotoxicity and carcinogenicity of aflatoxin B1 (AFB1). Salvia miltiorrhiza (Sm), a herbal plant that has been used extensively in traditional Chinese medicine for treating cardiovascular and liver diseases, is believed to have some antioxidative capabilities. In this study, the protective effect of Sm against AFB1-induced cytotoxicity was investigated in cultured primary rat hepatocytes. AFB1-induced cytotoxicity and lipid peroxidation (LPO) were estimated by determination of lactate dehydrogenase (LDH) leakage and thiobarbituric acid reactive substances (TBARS) formation, respectively. Intracellular reactive oxygen species (ROS) formation was measured using a fluorescent probe 2′,7′-dichlorofluorescein diacetate (DCFH-DA). In addition, changes of intracellular glutathione (GSH) content were also studied. Results showed that Sm was able to suppress the LDH leakage induced by AFB1 in a dose-dependent manner. A dose-dependent inhibitory effect of Sm on AFB1-induced LPO was also found in hepatocytes treated with Sm. It was further observed that Sm produced an inhibitory effect on ROS formation caused by AFB1. Concomitantly, the GSH content in Sm-treated groups increased substantially compared to those without Sm treatment. These findings suggest that Sm can inhibit the cytotoxicity of AFB1 through decreasing ROS formation, inhibiting LPO and preventing GSH depletion. The major component of the aqueous extract of Sm was identified by using high performance liquid chromatography (HPLC), proton magnetic resonance (1H-NMR) and mass spectrum (MS). Analytical results suggested that D(+)β3,4-dihydroxyphenol lactic acid (DA) is the main compound of the aqueous extract of Sm.
    No preview · Article · Jan 1999 · Free Radical Research