C. M. Casey

University of Texas at Austin, Austin, Texas, United States

Are you C. M. Casey?

Claim your profile

Publications (71)352.36 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: ALMA Cycle 2 observations of the long wavelength dust emission in 145 star-forming galaxies are used to probe the evolution of star-forming ISM. We also develop the physical basis and empirical calibration (with 72 low-z and z ~ 2 galaxies) for using the dust continuum as a quantitative probe of interstellar medium (ISM) masses. The galaxies with highest star formation rates (SFRs) at = 2.2 and 4.4 have gas masses up to 100 times that of the Milky Way and gas mass fractions reaching 50 to 80%, i.e. gas masses 1 - 4 times their stellar masses. We find a single high-z star formation law: SFR = 35 M_ mol^0.89 x (1+z)_{z=2}^0.95 x (sSFR)_{MS}^0.23 \msun yr^-1 -- an approximately linear dependence on the ISM mass and an increased star formation efficiency per unit gas mass at higher redshift. Galaxies above the Main Sequence (MS) have larger gas masses but are converting their ISM into stars on a timescale only slightly shorter than those on the MS -- thus these 'starbursts' are largely the result of having greatly increased gas masses rather than and increased efficiency for converting gas to stars. At z $> 1$, the entire population of star-forming galaxies has $\sim$ 2 - 5 times shorter gas depletion times than low-z galaxies. These shorter depletion times indicate a different mode of star formation in the early universe -- most likely dynamically driven by compressive, high-dispersion gas motions -- a natural consequence of the high gas accretion rates.
    Preview · Article · Nov 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Next-Generation Very Large Array (ngVLA) will be critical for understanding how galaxies are built and evolve at the earliest epochs. The sensitivity and frequency coverage will allow for the detection of cold gas and dust in `normal' distant galaxies, including the low-J transitions of molecular gas tracers such as CO, HNC, and HCO+; synchrotron and free-free continuum emission; and even the exciting possibility of thermal dust emission at the highest (z~7) redshifts. In particular, by enabling the total molecular gas reservoirs to be traced to unprecedented sensitivities across a huge range of epochs simultaneously -- something no other radio or submillimeter facility will be capable of -- the detection of the crucial low-J transitions of CO in a diverse body of galaxies will be the cornerstone of ngVLA's contribution to high-redshift galaxy evolution science. The ultra-wide bandwidths will allow a complete sampling of radio SEDs, as well as the detection of emission lines necessary for spectroscopic confirmation of elusive dusty starbursts. The ngVLA will also deliver unique contributions to our understanding of cosmic magnetism and to science accessible through microwave polarimetry. Finally, the superb angular resolution will move the field beyond detection experiments and allow detailed studies of the morphology and dynamics of these systems, including dynamical modeling of disks/mergers, determining the properties of outflows, measuring black hole masses from gas disks, and resolving multiple AGN nuclei. We explore the contribution of a ngVLA to these areas and more, as well as synergies with current and upcoming facilities including ALMA, SKA, large single-dish submillimeter observatories, GMT/TMT, and JWST.
    Preview · Article · Oct 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The rest-frame ultraviolet properties of galaxies during the first three billion years of cosmic time (redshift z > 4) indicate a rapid evolution in the dust obscuration of such galaxies. This evolution implies a change in the average properties of the interstellar medium, but the measurements are systematically uncertain owing to untested assumptions and the inability to detect heavily obscured regions of the galaxies. Previous attempts to measure the interstellar medium directly in normal galaxies at these redshifts have failed for a number of reasons, with two notable exceptions. Here we report measurements of the forbidden C ii emission (that is, [C II]) from gas, and the far-infrared emission from dust, in nine typical star-forming galaxies about one billion years after the Big Bang (z ≈ 5-6). We find that these galaxies have thermal emission that is less than 1/12 that of similar systems about two billion years later, and enhanced [C II] emission relative to the far-infrared continuum, confirming a strong evolution in the properties of the interstellar medium in the early Universe. The gas is distributed over scales of one to eight kiloparsecs, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z < 3 and being comparable in dust content to local low-metallicity systems.
    No preview · Article · Jun 2015 · Nature
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Numerical simulations of cosmological structure formation show that the Universe's most massive clusters, and the galaxies living in those clusters, assemble rapidly at early times (2.5 < z < 4). While more than twenty proto-clusters have been observed at z > 2 based on associations of 5-40 galaxies around rare sources, the observational evidence for rapid cluster formation is weak. Here we report observations of an asymmetric, filamentary structure at z = 2.47 containing seven starbursting, submillimeter-luminous galaxies and five additional AGN within a volume of 4000 Mpc$^{3}$. As the expected lifetime of both the luminous AGN and starburst phase of a galaxy is ~100 Myr, we conclude that these sources were likely triggered in rapid succession by environmental factors, or, alternatively, the duration of these cosmologically rare phenomena is much longer than prior direct measurements suggest. The stellar mass already built up in the structure is $\sim10^{12}M_{\odot}$ and we estimate that the cluster mass will exceed that of the Coma supercluster at $z \sim 0$. The filamentary structure is in line with hierarchical growth simulations which predict that the peak of cluster activity occurs rapidly at z > 2.
    Preview · Article · Jun 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: ALMA Cycle 2 observations of the long wavelength dust emission in 180 star-forming (SF) galaxies are used to investigate the evolution of ISM masses at z = 1 to 6.4. The ISM masses exhibit strong increases from z = 0 to $\rm $ = 1.15 and further to $\rm $ = 2.2 and 4.8, particularly amongst galaxies above the SF galaxy main sequence (MS). The galaxies with highest SFRs at $\rm $ = 2.2 and 4.8 have gas masses 100 times that of the Milky Way and gas mass fractions reaching 50 to 80\%, i.e. gas masses 1 - 4$\times$ their stellar masses. For the full sample of galaxies, we find a single, very simple SF law: $\rm SFR \propto M_{\rm ISM}^{0.9}$, i.e. a `linear' dependence on the ISM mass -- on and above the MS. Thus, the galaxies above the MS are converting their larger ISM masses into stars on a timescale similar to those on the MS. At z $> 1$, the entire population of star-forming galaxies has $\sim$5 - 10$\times$ shorter gas depletion times ($\sim0.2$ Gyr) than galaxies at low redshift. These {\bf shorter depletion times are due to a different, dominant mode of SF in the early universe} -- dynamically driven by compressive, high dispersion gas motions and/or galaxy interactions. The dispersive gas motions are a natural consequence of the extraordinarily high gas accretion rates which must occur to maintain the prodigious SF.
    No preview · Article · May 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the rest-frame optical spectral energy distribution and stellar masses of six Herschel- selected gravitationally lensed dusty, star-forming galaxies (DSFGs) at 1 < z < 3. These galaxies were first identified with Herschel/SPIRE imaging data from the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS) and the Herschel Multi-tiered Extragalactic Survey (HerMES). The targets were observed with Spitzer/IRAC at 3.6 and 4.5um. Due to the spatial resolution of the IRAC observations at the level of 2 arcseconds, the lensing features of a background DSFG in the near-infrared are blended with the flux from the foreground lensing galaxy in the IRAC imaging data. We make use of higher resolution Hubble/WFC3 or Keck/NIRC2 Adaptive Optics imaging data to fit light profiles of the foreground lensing galaxy (or galaxies) as a way to model the foreground components, in order to successfully disentangle the foreground lens and background source flux densities in the IRAC images. The flux density measurements at 3.6 and 4.5um, once combined with Hubble/WFC3 and Keck/NIRC2 data, provide important constraints on the rest-frame optical spectral energy distribution of the Herschel-selected lensed DSFGs. We model the combined UV- to millimeter-wavelength SEDs to establish the stellar mass, dust mass, star-formation rate, visual extinction, and other parameters for each of these Herschel-selected DSFGs. These systems have inferred stellar masses in the range 8 x 10^10 to 4 x 10^11 Msun and star-formation rates of around 100 Msun yr-1. This puts these lensed sub-millimeter systems well above the SFR-M* relation observed for normal star-forming galaxies at similar redshifts. The high values of SFR inferred for these systems are consistent with a major merger-driven scenario for star formation.
    Full-text · Article · Apr 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe the search for Lyman-break galaxies (LBGs) near the sub-millimeter bright starburst galaxy HFLS3 at $z$$=$6.34 and a study on the environment of this massive galaxy during the end of reionization. We performed two independent selections of LBGs on images obtained with the Gran Telescopio Canarias (GTC) and the Hubble Space Telescope (HST) by combining non-detections in bands blueward of the Lyman-break and color selection. A total of 10 objects fulfilling the LBG selection criteria at $z$$>$5.5 were selected over the 4.54 and 55.5 arcmin$^2$ covered by our HST and GTC images, respectively. The photometric redshift, UV luminosity, and the star-formation rate of these sources were estimated with models of their spectral energy distribution. These $z$$\sim$6 candidates have physical properties and number densities in agreement with previous results. The UV luminosity function of this field at $z$$\sim$6 shows no strong evidence for an overdensity of relatively bright objects (m$_{F105W}$$<$25.9) associated with HFLS3. A Voronoi tessellation analysis also did not allow a detection of an overdensity around HFLS3. However we identified three faint objects at less than three arcseconds from HFLS3 with color consistent with those expected for $z$$\sim$6 galaxies. Deeper data are needed to confirm their redshifts and to study their association with HFLS3 and the galaxy merger that may be responsible for the massive starburst.
    Full-text · Article · Apr 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Evolution in the measured rest frame ultraviolet spectral slope and ultraviolet to optical flux ratios indicate a rapid evolution in the dust obscuration of galaxies during the first 3 billion years of cosmic time (z>4). This evolution implies a change in the average interstellar medium properties, but the measurements are systematically uncertain due to untested assumptions, and the inability to measure heavily obscured regions of the galaxies. Previous attempts to directly measure the interstellar medium in normal galaxies at these redshifts have failed for a number of reasons with one notable exception. Here we report measurements of the [CII] gas and dust emission in 9 typical (~1-4L*) star-forming galaxies ~1 billon years after the big bang (z~5-6). We find these galaxies have >12x less thermal emission compared with similar systems ~2 billion years later, and enhanced [CII] emission relative to the far-infrared continuum, confirming a strong evolution in the interstellar medium properties in the early universe. The gas is distributed over scales of 1-8 kpc, and shows diverse dynamics within the sample. These results are consistent with early galaxies having significantly less dust than typical galaxies seen at z<3 and being comparable to local low-metallicity systems.
    Preview · Article · Mar 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The classification of galaxy mergers and isolated disks is key for understanding the relative importance of galaxy interactions and secular evolution during the assembly of galaxies. The kinematic properties of galaxies as traced by emission lines have been used to suggest the existence of a significant population of high-z star-forming galaxies consistent with isolated rotating disks. However, recent studies have cautioned that post-coalescence mergers may also display disk-like kinematics. To further investigate the robustness of merger/disk classifications based on kinematic properties, we carry out a systematic classification of 24 local (U)LIRGs spanning a range of galaxy morphologies: from isolated spiral galaxies, ongoing interacting systems, to fully merged remnants. We artificially redshift the WiFeS observations of these local (U)LIRGs to z=1.5 to make a realistic comparison with observations at high-z, and also to ensure that all galaxies have the same spatial sampling of ~900 pc. Using both kinemetry-based and visual classifications, we find that the reliability of kinematic classification shows a strong trend with the interaction stage of galaxies. Mergers with two nuclei and tidal tails have the most distinct kinematic properties compared to isolated disks, whereas a significant population of the interacting disks and merger remnants are indistinguishable from isolated disks. The high fraction of late-stage mergers showing disk-like kinematics reflects the complexity of the dynamics during galaxy interactions. However, the exact fractions of misidentified disks and mergers depend on the definition of kinematic asymmetries and the classification threshold when using kinemetry-based classifications. Our results suggest that additional indicators such as morphologies traced by stars or molecular gas are required to further constrain the merger/disk classifications at high-z.
    Full-text · Article · Mar 2015 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: The relationship between galaxy star formation rates (SFRs) and stellar masses (M *) is reexamined using a mass-selected sample of ~62,000 star-forming galaxies at z ≤ 1.3 in the COSMOS 2 deg2 field. Using new far-infrared photometry from Herschel-PACS and SPIRE and Spitzer-MIPS 24 μm, along with derived infrared luminosities from the NRK method based on galaxies' locations in the restframe color-color diagram (NUV - r) versus (r - K), we are able to more accurately determine total SFRs for our complete sample. At all redshifts, the relationship between median SFR and M * follows a power law at low stellar masses, and flattens to nearly constant SFR at high stellar masses. We describe a new parameterization that provides the best fit to the main sequence and characterizes the low mass power-law slope, turnover mass, and overall scaling. The turnover in the main sequence occurs at a characteristic mass of about M 0 ~ 1010M ☉ at all redshifts. The low mass power-law slope ranges from 0.9-1.3 and the overall scaling rises in SFR as a function of (1 + z)4.12 ± 0.10. A broken power-law fit below and above the turnover mass gives relationships of below the turnover mass and above the turnover mass. Galaxies more massive than M * 1010M ☉ have a much lower average specific star formation rate (sSFR) than would be expected by simply extrapolating the traditional linear fit to the main sequence found for less massive galaxies.
    No preview · Article · Mar 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Hubble Space Telescope (HST) WFC3 imaging and grism spectroscopy observations of the Herschel-selected gravitationally-lensed starburst galaxy HATLASJ1429-0028. The lensing system consists of an edge-on foreground disk galaxy at $z=0.218$ with a nearly complete Einstein ring of the infrared luminous galaxy at $z=1.027$. The WFC3 spectroscopy with G102 and G141 grisms, covering the wavelength range of 0.8 to 1.7 $\mu$m, resulted in detections of H$\alpha$+[NII], H$\beta$, [SII], and [OIII] for the background galaxy from which we measure line fluxes and ratios. The Balmer line ratio H$\alpha$/H$\beta$ of 7.5 $\pm$ 4.4, when corrected for [NII], results in an extinction for the starburst galaxy of E(B-V)=0.8 $\pm$ 0.5. The H$\alpha$ based star-formation rate, when corrected for extinction, is 100 $\pm$ 80 M$_{\odot}$ yr$^{-1}$, lower than the instantaneous star-formation rate of 390 $\pm$ 90 M$_{\odot}$ yr$^{-1}$ from the total IR luminosity. We also compare the nebular line ratios of HATLASJ1429-0028 with other star-forming and sub-mm bright galaxies. The nebular line ratios are consistent with an intrinsic ultra-luminous infrared galaxy with no evidence for excitation by an active galactic nuclei (AGN). We estimate the metallicity, 12 + log(O/H), of HATLASJ1429-0028 to be 8.49 $\pm$ 0.16. This value is below the average relations for stellar mass vs. metallicity of galaxies at $z \sim 1$ for a galaxy with stellar mass of 1.1 $\pm$ 0.4 $\times$ 10^11 M$_{\odot}$. The high stellar mass, lack of AGN indicators, low metallicity, and high star-formation rate of HATLASJ1429-0028 suggests that this galaxy is currently undergoing a rapid formation.
    Full-text · Article · Jan 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The relationship between galaxy star formation rates (SFR) and stellar masses ($M_\ast$) is re-examined using a mass-selected sample of $\sim$62,000 star-forming galaxies at $z \le 1.3$ in the COSMOS 2-deg$^2$ field. Using new far-infrared photometry from $Herschel$-PACS and SPIRE and $Spitzer$-MIPS 24 $\mu$m, along with derived infrared luminosities from the NRK method based on galaxies' locations in the restframe color-color diagram $(NUV - r)$ vs. $(r - K)$, we are able to more accurately determine total SFRs for our complete sample. At all redshifts, the relationship between median $SFR$ and $M_\ast$ follows a power-law at low stellar masses, and flattens to nearly constant SFR at high stellar masses. We describe a new parameterization that provides the best fit to the main sequence and characterizes the low mass power-law slope, turnover mass, and overall scaling. The turnover in the main sequence occurs at a characteristic mass of about $M_{0} \sim 10^{10} M_{\odot}$ at all redshifts. The low mass power-law slope ranges from 0.9-1.3 and the overall scaling rises in SFR as a function of $(1+z)^{4.12 \pm 0.10}$. A broken power-law fit below and above the turnover mass gives relationships of $SFR \propto M_{*}^{0.88 \pm 0.06}$ below the turnover mass and $SFR \propto M_{*}^{0.27 \pm 0.04}$ above the turnover mass. Galaxies more massive than $M_\ast \gtrsim 10^{10}\ M_{\rm \odot}$ have on average, a much lower specific star formation rate (sSFR) than would be expected by simply extrapolating the traditional linear fit to the main sequence found for less massive galaxies.
    Preview · Article · Jan 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present stringent constraints on the average mid-, far-infrared and radio emissions of $\sim$14200 quiescent galaxies (QGs), identified out to $z=3$ in the COSMOS field via their rest-frame NUV$-$r and r$-$J colors, and with stellar masses $M_{\star}=10^{9.8-12.2} \,M_{\odot} $. Stacking in deep Spitzer (MIPS $24\,\mu$m), Herschel (PACS and SPIRE), and VLA (1.4 GHz) maps reveals extremely low dust-obscured star formation rates for QGs (SFR $<0.1-3\,M_{\odot}$yr$^{-1}$ at $z \leqslant 2$ and $<6-18\,M_{\odot}$yr$^{-1}$ at $z > 2$), consistent with the low unobscured SFRs ($<0.01-1.2\,M_{\odot}$yr$^{-1}$) inferred from modeling their ultraviolet-to-near-infrared photometry. The average SFRs of QGs are $>10\times$ below those of star-forming galaxies (SFGs) within the $M_{\star}$- and $z$-ranges considered. The stacked 1.4 GHz signals (S/N $> 5$) are, if attributed solely to star formation, in excess of the total (obscured plus unobscured) SFR limits, suggestive of a widespread presence of low-luminosity active galactic nuclei (AGN) among QGs. Our results reaffirm the existence of a significant population QGs out to $z = 3$, thus corroborating the need for powerful quenching mechanism(s) to terminate star formation in galaxies at earlier epochs.
    Preview · Article · Nov 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Galaxies' rest-frame ultraviolet (UV) properties are often used to directly infer the degree to which dust obscuration affects the measurement of star formation rates. While much recent work has focused on calibrating dust attenuation in galaxies selected at rest-frame ultraviolet wavelengths, locally and at high-$z$, here we investigate attenuation in dusty, star-forming galaxies (DSFGs) selected at far-infrared wavelengths. By combining multiwavelength coverage across 0.15--500\,$\mu$m in the COSMOS field, in particular making use of {\it Herschel} imaging, and a rich dataset on local galaxies, we find a empirical variation in the relationship between rest-frame UV slope ($\beta$) and ratio of infrared-to-ultraviolet emission ($L_{\rm IR}/L_{\rm UV}\equiv\,IRX$) as a function of infrared luminosity, or total star formation rate, SFR. Both locally and at high-$z$, galaxies above SFR$\gt$50\,M$_\odot$\,yr$^{-1}$ deviate from the nominal $IRX-\beta$ relation towards bluer colors by a factor proportional to their increasing IR luminosity. We also estimate contamination rates of DSFGs on high-$z$ dropout searches of $\ll1$\%\ at $z\lt4-10$, providing independent verification that contamination from very dusty foreground galaxies is low in LBG searches. Overall, our results are consistent with the physical interpretation that DSFGs, e.g. galaxies with $>50$\,M$_\odot$\,yr$^{-1}$, are dominated at all epochs by short-lived, extreme burst events, producing many young O and B stars that are primarily, yet not entirely, enshrouded in thick dust cocoons. The blue rest-frame UV slopes of DSFGs are inconsistent with the suggestion that most DSFGs at $z\sim2$ exhibit steady-state star formation in secular disks.
    Full-text · Article · Oct 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ultraluminous and luminous infrared galaxies (ULIRGs and LIRGs) are the most extreme star-forming galaxies in the universe and dominate the total star formation rate density at z > 1. In the local universe (z < 0.3), the majority of ULIRGs and a significant portion of LIRGs are triggered by interactions between gas-rich spiral galaxies, yet it is unclear if this is still the case at high z. To investigate the relative importance of galaxy interactions in infrared luminous galaxies, we carry out a comparison of optical morphological properties between local (U)LIRGs and (U)LIRGs at z = 0.5-1.5 based on the same sample selection, morphology classification scheme, and optical morphology at similar rest-frame wavelengths. In addition, we quantify the systematics in comparing local and high-z data sets by constructing a redshifted data set from local (U)LIRGs, in which its data quality mimics the high-z data set. Based on the Gini-M 20 classification scheme, we find that the fraction of interacting systems decreases by ~8% from local to z 1, and it is consistent with the reduction between local and redshifted data sets (). Based on visual classifications, the merger fraction of local ULIRGs is found to be ~20% lower compared to published results, and the reduction due to redshifting is . Consequently, the differences of merger fractions between local and z 1 (U)LIRGs is only ~17%. These results demonstrate that there is no strong evolution in the fraction of (U)LIRGs classified as mergers at least out to z ~ 1. At z > 1, the morphology types of ~30% of (U)LIRGs cannot be determined due to their faintness in the F814W band; thus, the merger fraction measured at z > 1 suffers from large uncertainties.
    Full-text · Article · Jun 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present Keck-Adaptive Optics and Hubble Space Telescope high resolution near-infrared (IR) imaging for 500 um-bright candidate lensing systems identified by the Herschel Multi-tiered Extra-galactic Survey (HerMES) and Herschel Astrophysical Terahertz Survey (H-ATLAS). Out of 87 candidates with near-IR imaging, 15 (~17%) display clear near-IR lensing morphologies. We present near-IR lens models to reconstruct and recover basic rest-frame optical morphological properties of the background galaxies from 12 new systems. Sources with the largest near-IR magnification factors also tend to be the most compact, consistent with the size bias predicted from simulations and pre- vious lensing models for sub-millimeter galaxies. For four new sources that also have high-resolution sub-mm maps, we test for differential lensing between the stellar and dust components and find that the 880 um magnification factor (u_880) is ~1.5 times higher than the near-IR magnification factor (u_NIR), on average. We also find that the stellar emission is ~2 times more extended in size than dust. The rest-frame optical properties of our sample of Herschel-selected lensed SMGs are consistent with those of unlensed SMGs, which suggests that the two populations are similar.
    Full-text · Article · Jun 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We discuss the rest-frame ultraviolet emission from the starbursting galaxy HFLS3 at a redshift of 6.34. The galaxy was discovered in Herschel/SPIRE data due to its red color in the submillimeter wavelengths from 250 to 500 μm. Keck/NIRC2 Ks -band adaptive optics imaging data showed two potential near-IR counterparts near HFLS3. Previously, the northern galaxy was taken to be in the foreground at z = 2.1, while the southern galaxy was assumed to be HFLS3's near-IR counterpart. The recently acquired Hubble/WFC3 and Advanced Camera for Surveys (ACS) imaging data show conclusively that both optically bright galaxies are in the foreground at z < 6. A new lensing model based on the Hubble imaging data and the millimeter-wave continuum emission yields a magnification factor of 2.2 ± 0.3, with a 95% confidence upper limit on the magnification of 3.5. When corrected for lensing, the instantaneous star formation rate is 1320 M ☉ yr–1, with the 95% confidence lower limit around 830 M ☉ yr–1. The dust and stellar masses of HFLS3 from the same spectral energy distribution (SED) models are at the level of 3 × 108M ☉ and ~5 × 1010M ☉, respectively, with large systematic uncertainties on assumptions related to the SED model. With Hubble/WFC3 images, we also find diffuse near-IR emission about 0.5 arcsec (~3 kpc) to the southwest of HFLS3 that remains undetected in the ACS imaging data. The emission has a photometric redshift consistent with either z ~ 6 or a dusty galaxy template at z ~ 2.
    Full-text · Article · Apr 2014 · The Astrophysical Journal
  • Source
    Caitlin M. Casey · Desika Narayanan · Asantha Cooray
    [Show abstract] [Hide abstract]
    ABSTRACT: Far-infrared and submillimeter wavelength surveys have now established the important role of dusty, star-forming galaxies (DSFGs) in the assembly of stellar mass and the evolution of massive galaxies in the Universe. The brightest of these galaxies have infrared luminosities in excess of 10$^{13}$ L$_{\odot}$ with implied star-formation rates of thousands of solar masses per year. They represent the most intense starbursts in the Universe, yet many are completely optically obscured. Their easy detection at submm wavelengths is due to dust heated by ultraviolet radiation of newly forming stars. When summed up, all of the dusty, star-forming galaxies in the Universe produce an infrared radiation field that has an equal energy density as the direct starlight emission from all galaxies visible at ultraviolet and optical wavelengths. The bulk of this infrared extragalactic background light emanates from galaxies as diverse as gas-rich disks to mergers of intense starbursting galaxies. Major advances in far-infrared instrumentation in recent years, both space-based and ground-based, has led to the detection of nearly a million DSFGs, yet our understanding of the underlying astrophysics that govern the start and end of the dusty starburst phase is still in nascent stage. This review is aimed at summarizing the current status of DSFG studies, focusing especially on the detailed characterization of the best-understood subset (submillimeter galaxies, who were summarized in the last review of this field over a decade ago, Blain et al., 2002), but also the selection and characterization of more recently discovered DSFG populations. We review DSFG population statistics, their physical properties including dust, gas and stellar contents, their environments, and current theoretical models related to the formation and evolution of these galaxies.
    Preview · Article · Feb 2014 · Physics Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use the James Clerk Maxwell Telescope's SCUBA-2 camera to image a 400 arcmin^2 area surrounding the GOODS-N field. The 850 micron rms noise ranges from a value of 0.49 mJy in the central region to 3.5 mJy at the outside edge. From these data, we construct an 850 micron source catalog to 2 mJy containing 49 sources detected above the 4-sigma level. We use an ultradeep (11.5 uJy at 5-sigma) 1.4 GHz image obtained with the Karl G. Jansky Very Large Array together with observations made with the Submillimeter Array to identify counterparts to the submillimeter galaxies. For most cases of multiple radio counterparts, we can identify the correct counterpart from new and existing Submillimeter Array data. We have spectroscopic redshifts for 62% of the radio sources in the 9 arcmin radius highest sensitivity region (556/894) and 67% of the radio sources in the GOODS-N region (367/543). We supplement these with a modest number of additional photometric redshifts in the GOODS-N region (30). We measure millimetric redshifts from the radio to submillimeter flux ratios for the unidentified submillimeter sample, assuming an Arp 220 spectral energy distribution. We find a radio flux dependent K-z relation for the radio sources, which we use to estimate redshifts for the remaining radio sources. We determine the star formation rates (SFRs) of the submillimeter sources based on their radio powers and their submillimeter and find that they agree well. The radio data are deep enough to detect star-forming galaxies with SFRs >2000 solar masses per year to z~6. We find galaxies with SFRs up to ~6,000 solar masses per year over the redshift range z=1.5-6, but we see evidence for a turn-down in the SFR distribution function above 2000 solar masses per year.
    Preview · Article · Jan 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We outline the prospects for performing pioneering radio weak gravitational lensing analyses using observations from a potential forthcoming JVLA Sky Survey program. A large-scale survey with the JVLA can offer interesting and unique opportunities for performing weak lensing studies in the radio band, a field which has until now been the preserve of optical telescopes. In particular, the JVLA has the capacity for large, deep radio surveys with relatively high angular resolution, which are the key characteristics required for a successful weak lensing study. We highlight the potential advantages and unique aspects of performing weak lensing in the radio band. In particular, the inclusion of continuum polarisation information can greatly reduce noise in weak lensing reconstructions and can also remove the effects of intrinsic galaxy alignments, the key astrophysical systematic effect that limits weak lensing at all wavelengths. We identify a VLASS "deep fields" program (total area ~10-20 square degs), to be conducted at L-band and with high-resolution (A-array configuration), as the optimal survey strategy from the point of view of weak lensing science. Such a survey will build on the unique strengths of the JVLA and will remain unsurpassed in terms of its combination of resolution and sensitivity until the advent of the Square Kilometre Array. We identify the best fields on the JVLA-accessible sky from the point of view of overlapping with existing deep optical and near infra-red data which will provide crucial redshift information and facilitate a host of additional compelling multi-wavelength science.
    Full-text · Article · Dec 2013

Publication Stats

971 Citations
352.36 Total Impact Points

Institutions

  • 2015
    • University of Texas at Austin
      Austin, Texas, United States
  • 2014-2015
    • University of California, Irvine
      • Department of Physics and Astronomy
      Irvine, California, United States
    • Cornell University
      • Department of Astronomy
      Ithaca, New York, United States
  • 2012-2013
    • Honolulu University
      Honolulu, Hawaii, United States
    • California Institute of Technology
      • Spitzer Science Center
      Pasadena, California, United States
    • University of Wisconsin–Madison
      Madison, Wisconsin, United States
    • University of Hawaiʻi at Mānoa
      • Institute for Astronomy
      Honolulu, Hawaii, United States
  • 2010-2012
    • University of Hawai'i System
      Honolulu, Hawaii, United States
  • 2008-2010
    • University of Cambridge
      • Institute of Astronomy
      Cambridge, England, United Kingdom
    • The University of Arizona
      Tucson, Arizona, United States