T. Erben

University of Bonn, Bonn, North Rhine-Westphalia, Germany

Are you T. Erben?

Claim your profile

Publications (204)571.99 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We present RedGOLD (Red-sequence Galaxy Overdensity cLuster Detector), a new optical/NIR galaxy cluster detection algorithm, and apply it to the CFHT-LS W1 field. RedGOLD searches for red-sequence galaxy overdensities while minimizing contamination from dusty star-forming galaxies. It imposes an Navarro–Frenk–White profile and calculates cluster detection significance and richness. We optimize these latter two parameters using both simulations and X-ray-detected cluster catalogues, and obtain a catalogue ∼80 per cent pure up to z ∼ 1, and ∼100 per cent (∼70 per cent) complete at z ≤ 0.6 (z ≲ 1) for galaxy clusters with M ≳ 1014 M⊙ at the CFHT-LS Wide depth. In the CFHT-LS W1, we detect 11 cluster candidates per deg2 out to z ∼ 1.1. When we optimize both completeness and purity, RedGOLD obtains a cluster catalogue with higher completeness and purity than other public catalogues, obtained using CFHT-LS W1 observations, for M ≳ 1014 M⊙. We use X-ray-detected cluster samples to extend the study of the X-ray temperature–optical richness relation to a lower mass threshold, and find a mass scatter at fixed richness of σlnM|λ = 0.39 ± 0.07 and σlnM|λ = 0.30 ± 0.13 for the Gozaliasl et al. and Mehrtens et al. samples. When considering similar mass ranges as previous work, we recover a smaller scatter in mass at fixed richness. We recover 93 per cent of the redMaPPer detections, and find that its richness estimates is on average ∼40–50 per cent larger than ours at z > 0.3. RedGOLD recovers X-ray cluster spectroscopic redshifts at better than 5 per cent up to z ∼ 1, and the centres within a few tens of arcseconds.
    No preview · Article · Jan 2016 · Monthly Notices of the Royal Astronomical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we present results of applying the shear-ratio method to the RCSLenS data. The method takes the ratio of the mean of the weak lensing tangential shear signal about galaxy clusters, averaged over all clusters of the same redshift, in multiple background redshift bins. In taking a ratio the mass-dependency of the shear signal is cancelled-out leaving a statistic that is dependent on the geometric part of the lensing kernel only. We apply this method to 535 clusters and measure a cosmology-independent distance-redshift relation to redshifts z~1. In combination with Planck data the method lifts the degeneracies in the CMB measurements, resulting in cosmological parameter constraints of OmegaM=0.31 +/- 0.10 and w0 = -1.02 +/- 0.37, for a flat wCDM cosmology.
    No preview · Article · Dec 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions $p(z)$. Our method utilises measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin $j$ into a spectroscopic redshift bin $i$ using the sum of the $p(z)$ for the galaxies residing in bin $j$. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when $i \neq j$ as a function of the measured angular cross-correlation when $i=j$. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed $p(z)$ to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey (RCSLenS), which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed $p(z)$ from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than $\sim 4\%$. For photometric redshift bins which spatially overlap in 3-D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.
    No preview · Article · Dec 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present measurements of the galaxy bias b and the galaxy–matter cross-correlation coefficient r for the Baryon Oscillation Spectroscopic Survey LOWZ luminous red galaxy sample. Using a new statistical weak lensing analysis of the Red Cluster Sequence Lensing Survey (RCSLenS), we find the bias properties of this sample to be higher than previously reported with $b=2.45_{-0.05}^{+0.05}$ and $r=1.64_{-0.16}^{+0.17}$ on scales between 3 and 20 arcmin. We repeat the measurement for angular scales of 20 arcmin ≤ ϑ ≤ 70 arcmin, which yields $b=2.39_{-0.07}^{+0.07}$ and $r=1.24_{-0.25}^{+0.26}$. This is the first application of a data compression analysis using a complete set of discrete estimators for galaxy–galaxy lensing and galaxy clustering. As cosmological data sets grow, our new method of data compression will become increasingly important in order to interpret joint weak lensing and galaxy clustering measurements and to estimate the data covariance. In future studies, this formalism can be used as a tool to study the large-scale structure of the Universe to yield a precise determination of cosmological parameters.
    No preview · Article · Dec 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Observations of the cosmic microwave background indicate that baryons account for 5% of the Universe's total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simulations indicate that the missing baryons might not have condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of $10^5-10^7$ kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at $10^7$ kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over scales of 8 mergaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the cluster's gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.
    Full-text · Article · Dec 2015 · Nature
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mass calibration uncertainty is the largest systematic effect for using clusters of galaxies to constrain cosmological parameters. We present weak lensing mass measurements from the Canada-France-Hawaii Telescope Stripe 82 Survey for galaxy clusters selected through their high signal-to-noise thermal Sunyaev-Zeldovich (tSZ) signal measured with the Atacama Cosmology Telescope (ACT). The average weak lensing mass is $\left(4.8\pm0.8\right)\,\times10^{14}\,\mathrm{M}_\odot$, consistent with the tSZ mass estimate of $\left(4.70\pm1.0\right)\,\times10^{14}\,\mathrm{M}_\odot$ which assumes a universal pressure profile for the cluster gas. Our results are consistent with previous weak-lensing measurements of tSZ-detected clusters from the Planck satellite. When comparing our results, we estimate the Eddington bias correction for the sample intersection of Planck and weak-lensing clusters which was previously neglected.
    No preview · Article · Sep 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present weak lensing constraints on the ellipticity of galaxy-scale matter haloes and the galaxy-halo misalignment. Using data from the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS), we measure the weighted-average ratio of the aligned projected ellipticity components of galaxy matter haloes and their embedded galaxies, fh, split by galaxy type. We then compare our observations to measurements taken from the Millennium Simulation, assuming different models of galaxy-halo misalignment. Using the Millennium Simulation, we verify that the statistical estimator used removes contamination from cosmic shear. We also detect an additional signal in the simulation, which we interpret as the impact of intrinsic shape–shear alignments between the lenses and their large-scale structure environment. These alignments are likely to have caused some of the previous observational constraints on fh to be biased high. From CFHTLenS, we find fh = −0.04 ± 0.25 for early-type galaxies, which is consistent with current models for the galaxy-halo misalignment predicting fh ≃ 0.20. For late-type galaxies we measure $f_\mathrm{h}=0.69_{-0.36}^{+0.37}$ from CFHTLenS. This can be compared to the simulated results which yield fh ≃ 0.02 for misaligned late-type models.
    Full-text · Article · Jul 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The unknown nature of ‘dark energy’ motivates continued cosmological tests of large-scale gravitational physics. We present a new consistency check based on the relative amplitude of non-relativistic galaxy peculiar motions, measured via redshift-space distortion, and the relativistic deflection of light by those same galaxies traced by galaxy–galaxy lensing. We take advantage of the latest generation of deep, overlapping imaging and spectroscopic data sets, combining the Red Cluster Sequence Lensing Survey, the Canada–France–Hawaii Telescope Lensing Survey, the WiggleZ Dark Energy Survey and the Baryon Oscillation Spectroscopic Survey. We quantify the results using the ‘gravitational slip’ statistic EG, which we estimate as 0.48 ± 0.10 at z = 0.32 and 0.30 ± 0.07 at z = 0.57, the latter constituting the highest redshift at which this quantity has been determined. These measurements are consistent with the predictions of General Relativity, for a perturbed Friedmann–Robertson–Walker metric in a Universe dominated by a cosmological constant, which are EG = 0.41 and 0.36 at these respective redshifts. The combination of redshift-space distortion and gravitational lensing data from current and future galaxy surveys will offer increasingly stringent tests of fundamental cosmology.
    Preview · Article · Jul 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use the shear catalog from the CFHT Stripe-82 Survey to measure the subhalo masses of satellite galaxies in redMaPPer clusters. Assuming a Chabrier Initital Mass Function (IMF) and a truncated NFW model for the subhalo mass distribution, we find that the sub-halo mass to galaxy stellar mass ratio increases as a function of projected halo-centric radius $r_p$, from $M_{\rm sub}/M_{\rm star}=3.48^{+ 4.48}_{- 2.48}$ at $r_p \in [0.1,0.3] $ $\mpch$ to $M_{\rm sub}/M_{\rm star}=41.15^{+ 12.55}_{- 12.51}$ at $r_p \in [0.6,0.9]$ $\mpch$. We also investigate the dependence of subhalo masses on stellar mass by splitting satellite galaxies into two stellar mass bins: $10<\log(M_{\rm star}/\ms)<10.75$ and $10.75<\log(M_{\rm star}/\ms)<12$. The mean subhalo mass of the more massive satellite galaxy bin is about 5 times larger than that of the less massive satellites: $\log(M_{\rm sub}/\ms)=12.12 ^{+ 0.19 }_{- 0.19}$ ($M_{\rm sub}/M_{\rm star}=12^{+5}_{-5}$) versus $\log(M_{\rm sub}/\ms)=11.37 ^{+ 0.67 }_{- 0.90}$ ($M_{\rm sub}/M_{\rm star}=17^{+16}_{-16}$).
    Full-text · Article · Jul 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We use the first 100 deg2 of overlap between the Kilo-Degree Survey and the Galaxy And Mass Assembly survey to determine the average galaxy halo mass of ∼10 000 spectroscopically confirmed satellite galaxies in massive (M > 1013 h−1 M⊙) galaxy groups. Separating the sample as a function of projected distance to the group centre, we jointly model the satellites and their host groups with Navarro–Frenk–White density profiles, fully accounting for the data covariance. The probed satellite galaxies in these groups have total masses log 〈Msub/(h−1 M⊙)〉 ≈ 11.7–12.2 consistent across group-centric distance within the errorbars. Given their typical stellar masses, log 〈M⋆, sat/(h−2 M⊙)〉 ∼ 10.5, such total masses imply stellar mass fractions of 〈M⋆, sat〉/〈Msub〉 ≈ 0.04 h−1. The average subhalo hosting these satellite galaxies has a mass Msub ∼ 0.015Mhost independent of host halo mass, in broad agreement with the expectations of structure formation in a Λ cold dark matter universe.
    Full-text · Article · Jul 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Kilo-Degree Survey is an optical wide-field survey designed to map the matter distribution in the Universe using weak gravitational lensing. In this paper, we use these data to measure the density profiles and masses of a sample of ∼1400 spectroscopically identified galaxy groups and clusters from the Galaxy And Mass Assembly survey. We detect a highly significant signal (signal-to-noise-ratio ∼120), allowing us to study the properties of dark matter haloes over one and a half order of magnitude in mass, from M ∼ 1013–1014.5 h−1 M⊙. We interpret the results for various subsamples of groups using a halo model framework which accounts for the mis-centring of the brightest cluster galaxy (used as the tracer of the group centre) with respect to the centre of the group's dark matter halo. We find that the density profiles of the haloes are well described by an NFW profile with concentrations that agree with predictions from numerical simulations. In addition, we constrain scaling relations between the mass and a number of observable group properties. We find that the mass scales with the total r-band luminosity as a power law with slope 1.16 ± 0.13 (1σ) and with the group velocity dispersion as a power law with slope 1.89 ± 0.27 (1σ). Finally, we demonstrate the potential of weak lensing studies of groups to discriminate between models of baryonic feedback at group scales by comparing our results with the predictions from the Cosmo-OverWhelmingly Large Simulations project, ruling out models without AGN feedback.
    Full-text · Article · Jul 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Kilo-Degree Survey (KiDS) is a multi-band imaging survey designed for cosmological studies from weak lensing and photometric redshifts. It uses the ESO VLT Survey Telescope with its wide-field camera OmegaCAM. KiDS images are taken in four filters similar to the SDSS ugri bands. The best-seeing time is reserved for deep r-band observations that reach a median 5-sigma limiting AB magnitude of 24.9 with a median seeing that is better than 0.7arcsec. Initial KiDS observations have concentrated on the GAMA regions near the celestial equator, where extensive, highly complete redshift catalogues are available. A total of 101 survey tiles, one square degree each, form the basis of the first set of lensing analyses, which focus on measurements of halo properties of GAMA galaxies. 9 galaxies per square arcminute enter the lensing analysis, for an effective inverse shear variance of 69 per square arcminute. Accounting for the shape measurement weight, the median redshift of the sources is 0.53. KiDS data processing follows two parallel tracks, one optimized for galaxy shape measurement (for weak lensing), and one for accurate matched-aperture photometry in four bands (for photometric redshifts). This technical paper describes how the lensing and photometric redshift catalogues have been produced (including an extensive description of the Gaussian Aperture and Photometry pipeline), summarizes the data quality, and presents extensive tests for systematic errors that might affect the lensing analyses. We also provide first demonstrations of the suitability of the data for cosmological measurements, and explain how the shear catalogues were blinded to prevent confirmation bias in the scientific analyses. The KiDS shear and photometric redshift catalogues, presented in this paper, are released to the community through http://kids.strw.leidenuniv.nl .
    Full-text · Article · Jul 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Kilo-Degree Survey (KiDS) is an optical wide-field imaging survey carried out with the VLT Survey Telescope and the OmegaCAM camera. KiDS will image 1500 square degrees in four filters (ugri), and together with its near-infrared counterpart VIKING will produce deep photometry in nine bands. Designed for weak lensing shape and photometric redshift measurements, the core science driver of the survey is mapping the large-scale matter distribution in the Universe back to a redshift of ~0.5. Secondary science cases are manifold, covering topics such as galaxy evolution, Milky Way structure, and the detection of high-redshift clusters and quasars. KiDS is an ESO Public Survey and dedicated to serving the astronomical community with high-quality data products derived from the survey data, as well as with calibration data. Public data releases will be made on a yearly basis, the first two of which are presented here. For a total of 148 survey tiles (~160 sq.deg.) astrometrically and photometrically calibrated, coadded ugri images have been released, accompanied by weight maps, masks, source lists, and a multi-band source catalog. A dedicated pipeline and data management system based on the Astro-WISE software system, combined with newly developed masking and source classification software, is used for the data production of the data products described here. The achieved data quality and early science projects based on the data products in the first two data releases are reviewed in order to validate the survey data. Early scientific results include the detection of nine high-z QSOs, fifteen candidate strong gravitational lenses, high-quality photometric redshifts and galaxy structural parameters for hundreds of thousands of galaxies. (Abridged)
    Full-text · Article · Jul 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report the discovery of a gravitationally lensed hyperluminous infrared galaxy (intrinsic LIR ≈ 1013 L⊙) with strong radio emission (intrinsic L1.4 GHz ≈ 1025 W Hz−1) at z = 2.553. The source was identified in the citizen science project Space Warps through the visual inspection of tens of thousands of iJKs colour composite images of luminous red galaxies (LRGs), groups and clusters of galaxies and quasars. Appearing as a partial Einstein ring (re ≈ 3 arcsec) around an LRG at z = 0.2, the galaxy is extremely bright in the sub-millimetre for a cosmological source, with the thermal dust emission approaching 1 Jy at peak. The redshift of the lensed galaxy is determined through the detection of the CO(3→2) molecular emission line with the Large Millimetre Telescope's Redshift Search Receiver and through [O iii] and Hα line detections in the near-infrared from Subaru/Infrared Camera and Spectrograph. We have resolved the radio emission with high-resolution (300–400 mas) eMERLIN L-band and Very Large Array C-band imaging. These observations are used in combination with the near-infrared imaging to construct a lens model, which indicates a lensing magnification of μ ≈ 10. The source reconstruction appears to support a radio morphology comprised of a compact (<250 pc) core and more extended component, perhaps indicative of an active nucleus and jet or lobe.
    Full-text · Article · Mar 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We measure the cross-correlation of cosmic microwave background lensing convergence maps derived from Atacama Cosmology Telescope data with galaxy lensing convergence maps as measured by the Canada-France-Hawaii Telescope Stripe 82 Survey. The CMB-galaxy lensing cross power spectrum is measured for the first time with a significance of 3.2{\sigma}, which corresponds to a 16% constraint on the amplitude of density fluctuations at redshifts ~ 0.9. With upcoming improved lensing data, this novel type of measurement will become a powerful cosmological probe, providing a precise measurement of the mass distribution at intermediate redshifts and serving as a calibrator for systematic biases in weak lensing measurements.
    Full-text · Article · Mar 2015 · Physical Review D
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the correlations of the shear signal between triplets of sources in the Canada-France-Hawaii Lensing Survey (CFHTLenS) to probe cosmological parameters via the matter bispectrum. In contrast to previous studies, we adopted a non-Gaussian model of the data likelihood which is supported by our simulations of the survey. We find that for state-of-the-art surveys, similar to CFHTLenS, a Gaussian likelihood analysis is a reasonable approximation, albeit small differences in the parameter constraints are already visible. For future surveys we expect that a Gaussian model becomes inaccurate. Our algorithm for a refined non-Gaussian analysis and data compression is then of great utility especially because it is not much more elaborate if simulated data are available. Applying this algorithm to the third-order correlations of shear alone in a blind analysis, we find a good agreement with the standard cosmological model: $\Sigma_8$=$\sigma_8$ $(\Omega_{\rm m}/0.27)^{0.64}$=$0.79^{+0.08}_{-0.11}$ for a flat $\Lambda\rm CDM$ cosmology with $h=0.7\pm0.04$ ($68\%$ credible interval). Nevertheless our models provide only moderately good fits as indicated by $\chi^2/{\rm dof}=2.9$, including a $20\%$ r.m.s. uncertainty in the predicted signal amplitude. The models cannot explain a signal drop on scales around 15 arcmin, which may be caused by systematics. It is unclear whether the discrepancy can be fully explained by residual PSF systematics of which we find evidence at least on scales of a few arcmin. Therefore we need a better understanding of higher-order correlations of cosmic shear and their systematics to confidently apply them as cosmological probes.
    Full-text · Article · Feb 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present new constraints on the relationship between galaxies and their host dark matter halos, measured from the location of the peak of the stellar-to-halo mass ratio (SHMR), up to the most massive galaxy clusters at redshift $z\sim0.8$ and over a volume of nearly 0.1~Gpc$^3$. We use a unique combination of deep observations in the CFHTLenS/VIPERS field from the near-UV to the near-IR, supplemented by $\sim60\,000$ secure spectroscopic redshifts, analysing galaxy clustering, galaxy-galaxy lensing and the stellar mass function. We interpret our measurements within the halo occupation distribution (HOD) framework, separating the contributions from central and satellite galaxies. We find that the SHMR for the central galaxies peaks at $M_{\rm h, peak} = 1.9^{+0.2}_{-0.1}\times10^{12} M_{\odot}$ with an amplitude of $0.025$, which decreases to $\sim0.001$ for massive halos ($M_{\rm h} > 10^{14} M_{\odot}$). Compared to central galaxies only, the total SHMR (including satellites) is boosted by a factor 10 in the high-mass regime (cluster-size halos), a result consistent with cluster analyses from the literature based on fully independent methods. After properly accounting for differences in modelling, we have compared our results with a large number of results from the literature up to $z=1$: we find good general agreement, independently of the method used, within the typical stellar-mass systematic errors at low to intermediate mass (${M}_{\star} < 10^{11} M_{\odot}$) and the statistical errors above. We have also compared our SHMR results to semi-analytic simulations and found that the SHMR is tilted compared to our measurements in such a way that they over- (under-) predict star formation efficiency in central (satellite) galaxies.
    Full-text · Article · Feb 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a new measurement of the mass-concentration relation and the stellar-to-halo mass ratio over a 5*10^(12) solar mass to 2*10^(14) solar mass range. To achieve this, we use the CFHT Stripe 82 Survey (CS82) weak lensing data combined with a well defined catalog of clusters (the redMaPPer catalogue) and the LOWZ/CMASS galaxies of the Sloan Digital Sky Survey-III Baryon Oscillation Spectroscopic Survey Tenth Data Release (SDSS-III BOSS DR10). The stacked lensing signals around these samples are modeled as a sum of contributions from the central galaxy, the dark matter halo, and the neighboring halos. We measure the mass-concentration relation: c200(M)=A(M200/M0)^(B) with A=5.25+/-1.67, B=-0.13+/-0.12 for 0.2<z<0.4 and A=6.77+/-1.13, B=-0.15+/-0.06 for 0.4<z<0.6. We conclude that the amplitude A and slope B are both consistent with the simulation predictions by Klypin et al. (2014) within the errors. We also measure the stellar-to-halo mass ratio and find it to be flatter than previous measurement for high stellar masses because of the complex structures and merger history in massive dark matter halos.
    Full-text · Article · Feb 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We derived constraints on cosmological parameters using weak lensing peak statistics measured on the similar to aEuro parts per thousand 130 deg(2) of the Canada-France-Hawaii Telescope Stripe 82 Survey. This analysis demonstrates the feasibility of using peak statistics in cosmological studies. For our measurements, we considered peaks with signal-to-noise ratio in the range of nu = [3, 6]. For a flat I > cold dark matter model with only (Omega(m), sigma(8)) as free parameters, we constrained the parameters of the following relation I (8) pound = sigma(8)(Omega(m)/0.27)(alpha) to be I (8) pound = 0.82 +/- 0.03 and alpha = 0.43 +/- 0.02. The alpha value found is considerably smaller than the one measured in two-point and three-point cosmic shear correlation analyses, showing a significant complement of peak statistics to standard weak lensing cosmological studies. The derived constraints on (Omega(m), sigma(8)) are fully consistent with the ones from either WMAP9 or Planck. From the weak lensing peak abundances alone, we obtained marginalized mean values of tex-math id="TM0002" notation="LaTeX"$\Omega _{\rm m}=0.38{+0.27}_{-0.24}$/tex-math and sigma(8) = 0.81 +/- 0.26. Finally, we also explored the potential of using weak lensing peak statistics to constrain the mass-concentration relation of dark matter haloes simultaneously with cosmological parameters.
    No preview · Article · Jan 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We derived constraints on cosmological parameters using weak lensing peak statistics measured on the $\sim130~\rm{deg}^2$ of the Canada-France-Hawaii Telescope Stripe82 Survey (CS82). This analysis, based on a fast GPU code, demonstrates the feasibility of using peak statistics in cosmological studies. For our measurements, we considered peaks with signal-to-noise ratio in the range of $\nu=[3,6]$. For a flat $\Lambda$CDM model with only $(\Omega_{\rm m}, \sigma_8)$ as free parameters, we constrained the parameters of the following relation $\Sigma_8=\sigma_8(\Omega_{\rm m}/0.27)^{\alpha}$ to be: $\Sigma_8=0.82 \pm 0.03 $ and $\alpha=0.43\pm 0.02$. The $\alpha$ value found is considerably smaller than the one measured in two-point and three-point cosmic shear correlation analyses, showing a significant complementarity of peak statistics to standard weak lensing cosmological studies. The derived constraints on $(\Omega_{\rm m}, \sigma_8)$ are fully consistent with the ones from either WMAP9 or current Planck (with a better agreement with WMAP9 results). From the weak lensing peak abundances alone, we obtained marginalised mean values of $\Omega_{\rm m}=0.38^{+0.27}_{-0.24}$ and $\sigma_8=0.81^{+0.26}_{-0.26}$. Finally, we also explored the potential of using weak lensing peak statistics to constrain the mass-concentration relation of dark matter halos simultaneously with cosmological parameters.
    Full-text · Article · Dec 2014 · Monthly Notices of the Royal Astronomical Society

Publication Stats

4k Citations
571.99 Total Impact Points

Institutions

  • 2002-2013
    • University of Bonn
      • Argelander-Institute of Astronomy
      Bonn, North Rhine-Westphalia, Germany
  • 2006
    • University of Innsbruck
      Innsbruck, Tyrol, Austria
    • Max Planck Institute for Astrophysics
      Arching, Bavaria, Germany
  • 2001-2003
    • Observatoire de Paris
      Lutetia Parisorum, Île-de-France, France
    • Institut d'astrophysique de Paris
      Lutetia Parisorum, Île-de-France, France
  • 1998-1999
    • European Southern Observatory
      Arching, Bavaria, Germany