J. B. Ketterson

Northwestern University, Evanston, Illinois, United States

Are you J. B. Ketterson?

Claim your profile

Publications (851)1909.64 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Magnetization dynamics in an artificial square spin-ice lattice made of Ni80Fe20 with magnetic field applied in the lattice plane is investigated by broadband ferromagnetic resonance spectroscopy. The experimentally observed dispersion shows a rich spectrum of modes corresponding to different magnetization states. These magnetization states are determined by exchange and dipolar interaction between individual islands, as is confirmed by a semianalytical model. In the low field regime below 400 Oe a hysteretic behavior in the mode spectrum is found. Micromagnetic simulations reveal that the origin of the observed spectra is due to the initialization of different magnetization states of individual nanomagnets. Our results indicate that it might be possible to determine the spin-ice state by resonance experiments and are a first step towards the understanding of artificial geometrically frustrated magnetic systems in the high-frequency regime.
    Preview · Article · Jan 2016
  • [Show abstract] [Hide abstract]
    ABSTRACT: The understanding of spin dynamics in laterally confined structures on sub-micron length scales has become a significant aspect of the development of novel magnetic storage technologies. Numerous ferromagnetic resonance measurements, optical characterization by Kerr microscopy and Brillouin light scattering spectroscopy and x-ray studies were carried out to detect the dynamics in patterned magnetic antidot lattices. Here, we investigate Oersted-field driven spin dynamics in rectangular Ni80Fe20/Pt antidot lattices with different lattice parameters by electrical means and compare them to micromagnetic simulations. When the system is driven to resonance, a dc voltage across the length of the sample is detected that changes its sign upon field reversal, which is in agreement with a rectification mechanism based on the inverse spin Hall effect. Furthermore, we show that the voltage output scales linearly with the applied microwave drive in the investigated range of powers. Our findings have direct implications on the development of engineered magnonics applications and devices.
    No preview · Article · Jan 2016 · Applied Physics Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An improved method for characterizing the magnetic anisotropy of films with cubic symmetry is described and is applied to an yttrium iron garnet (111) film. Analysis of the FMR spectra performed both in-plane and out-of-plane from 0.7 to 8 GHz yielded the magnetic anisotropy constants as well as the saturation magnetization. The field at which FMR is observed turns out to be quite sensitive to anisotropy constants (by more than a factor ten) in the low frequency (< 2 GHz) regime and when the orientation of the magnetic field is nearly normal to the sample plane; the restoring force on the magnetization arising from the magnetocrystalline anisotropy fields is then comparable to that from the external field, thereby allowing the anisotropy constants to be determined with greater accuracy. In this region, unusual dynamical behaviors are observed such as multiple resonances and a switching of FMR resonance with only a 1 degree change in field orientation at 0.7 GHz.
    Preview · Article · Nov 2015
  • Source
    Jonathan Trossman · Zigeng Liu · Ming-Feng Tu · J. B. Ketterson
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on a novel Magneto-Optical Trap (MOT) geometry involving the retroreflection of one of the six MOT beams in order to create an atom cloud close to the surface of a prism which does not have optical access along one axis. A MOT of Rb$^{85}$ with $\sim 4 \times 10^7$ atoms can be created 700 um from the surface. The MOT lies close to the minimum of an evanescent Gravito-Optical Surface Trap (GOST) allowing for transfer into the GOST with potentially minimal losses.
    Preview · Article · Oct 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigate spin-orbit torques of metallic CuAu-I-type antiferromagnets using spin-torque ferromagnetic resonance tuned by a dc-bias current. The observed spin torques predominantly arise from diffusive transport of spin current generated by the spin Hall effect. We find a growth-orientation dependence of the spin torques by studying epitaxial samples, which may be correlated to the anisotropy of the spin Hall effect. The observed anisotropy is consistent with first-principles calculations on the intrinsic spin Hall effect. Our work suggests large tunable spin-orbit effects in magnetically-ordered materials.
    No preview · Article · Aug 2015 · Physical Review B
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Rashba-Edelstein effect stems from the interaction between the electron's spin and its momentum induced by spin-orbit interaction at an interface or a surface. It was shown that the inverse Rashba-Edelstein effect can be used to convert a spin- into a charge current. Here, we demonstrate that a Bi/Ag Rashba interface can even drive an adjacent ferromagnet to resonance. We employ a spin-torque ferromagnetic resonance excitation/detection scheme which was developed originally for a bulk spin-orbital effect, the spin Hall effect. In our experiment, the direct Rashba-Edelstein effect generates an oscillating spin current from an alternating charge current driving the magnetization precession in a neighboring permalloy (Py, Ni80Fe20) layer. Electrical detection of the magnetization dynamics is achieved by a rectification mechanism of the time dependent multilayer resistance arising from the anisotropic magnetoresistance.
    Full-text · Article · Aug 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to its transverse nature, spin Hall effects (SHE) provide the possibility to excite and detect spin currents and magnetization dynamics even in magnetic insulators. Magnetic insulators are outstanding materials for the investigation of nonlinear phenomena and for novel low power spintronics applications because of their extremely low Gilbert damping. Here, we report on the direct imaging of electrically driven spin-torque ferromagnetic resonance (ST-FMR) in the ferrimagnetic insulator Y$_3$Fe$_5$O$_{12}$ based on the excitation and detection by SHEs. The driven spin dynamics in Y$_3$Fe$_5$O$_{12}$ is directly imaged by spatially-resolved microfocused Brillouin light scattering (BLS) spectroscopy. Previously, ST-FMR experiments assumed a uniform precession across the sample, which is not valid in our measurements. A strong spin-wave localization in the center of the sample is observed indicating the formation of a nonlinear, self-localized spin-wave `bullet'.
    Full-text · Article · Aug 2015 · Physical Review Letters
  • Shi-Qiang Li · Kazuaki Sakoda · John B. Ketterson · Robert P. H. Chang
    [Show abstract] [Hide abstract]
    ABSTRACT: There is currently much discussion within the nanophotonics community regarding the origin of wavelength selective absorption/scattering of light by the resonances in nanorod arrays. Here, we report a study of resonances in ordered indium-tin-oxide nanorod arrays resulting from waveguide-like modes. We find that with only a 2.4% geometrical coverage, micron-length nanorod arrays interact strongly with light across a surprisingly wide band from the visible to the mid-infrared, resulting in less than 10% transmission. Simulations show excellent agreement with our experimental observations. The field profile in the vicinity of the rods obtained from simulations shows that the electric field is mainly localized on the surfaces of the nanorods for all resonances. Based on our analysis, the resonances in the visible are different in character from those in the infrared. When light is incident on the array, part of it propagates in the space between the rods and part of it is guided within the rods. The phase difference (interference) at the ends of the rods forms the basis for the resonances in the visible region. The resonances in the infrared are Fabry-Perot-like resonances involving standing surface waves between the opposing ends of the rods. Simple analytical formulae predict the spectral positions of these resonances. It is suggested that these phenomena can be utilized for wavelength-selective photodetectors, modulators, and nanorod-based solar cells.
    No preview · Article · Jul 2015 · Applied Physics Letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phase-pure cuprous oxide (Cu2O) crystals are difficult to grow since cupric oxide can form within the crystal as the crystal is cooled to ambient conditions. Vacancies are the solute which causes precipitation of macroscopic defects. Therefore, even when a mostly phase-pure single crystal is used as a feed rod, cupric oxide inclusions persist in the recrystallized solid. Control of the thermal profile during crystal growth, however, can improve phase-purity; a slow counter-rotation rate of the feed and seed rods results in fewer inclusions. Cupric oxide can be removed by annealing, which produces a factor of 540 ± 70 increase in phase-purity.
    No preview · Article · Jun 2015 · Science and Technology of Advanced Materials
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report experimental results on characteristics of SFIFS junctions and multiterminal SFIFSIS and SISFIS devices (where S, I, and F denote a superconductor (Nb), an insulator (AlOx), and a ferromagnetic material (Ni), respectively). The SFIFS (SFIS) junctions serve as injectors in the SFIFSIS (SISFIS) devices, which have transistorlike properties; for this reason, we call them superconducting-ferromagnetic transistors. We have found the F (Ni) thickness at which the SFIFS current-voltage characteristic becomes linear. For three-terminal SFIFSIS devices, we focused on studying the influence of the injection current through the SFIFS junction on the maximum Josephson current of the SIS acceptor. For four-terminal SISFIS devices, we studied dependence of the transport current through the middle Nb electrode on injection current level through the SFIS junction. In both cases, we found that the output superconducting current (either Josephson or transport) can be efficiently modulated by the quasiparticle injection from SFIFS or SFIS input junction. The experiments indicate that, after optimization of the device parameters, they can be used as input/output isolators and amplifiers for memory, digital, and RF applications.
    Full-text · Article · Jun 2015 · IEEE Transactions on Applied Superconductivity
  • [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate the generation and detection of spin-torque ferromagnetic resonance in Pt/YIG bilayers. A unique attribute of this system is that the spin Hall effect lies at the heart of both the generation and detection processes and no charge current is passing through the insulating magnetic layer. When the YIG undergoes resonance, a dc voltage is detected longitudinally along the Pt that can be described by two components. One is the mixing of the spin Hall magnetoresistance with the microwave current. The other results from spin pumping into the Pt being converted to a dc current through the inverse spin Hall effect. The voltage is measured with applied magnetic field directions that range in-plane to nearly perpendicular. We find that for magnetic fields that are mostly out-of-plane, an imaginary component of the spin mixing conductance is required to model our data.
    No preview · Article · May 2015 · Physical Review B
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The synthesis and properties of the hybrid organic/inorganic germanium perovskite compounds, AGeI3, are reported (A = Cs, organic cation). The systematic study of this reaction system led to the isolation of 6 new hybrid semiconductors. Using CsGeI3 (1) as the prototype compound, we have prepared methylammonium, CH3NH3GeI3 (2), formamidinium, HC(NH2)2GeI3 (3), acetamidinium, CH3C(NH2)2GeI3 (4), guanidinium, C(NH2)3GeI3 (5), trimethylammonium, (CH3)3NHGeI3 (6), and isopropylammonium, (CH3)2C(H)NH3GeI3 (7) analogues. The crystal structures of the compounds are classified based on their dimensionality with 1-4 forming 3D perovskite frameworks and 5-7 1D infinite chains. Compounds 1-7, with the exception of compounds 5 (centrosymmetric) and 7 (nonpolar acentric), crystallize in polar space groups. The 3D compounds have direct band gaps of 1.6 eV (1), 1.9 eV (2), 2.2 eV (3), and 2.5 eV (4), while the 1D compounds have indirect band gaps of 2.7 eV (5), 2.5 eV (6), and 2.8 eV (7). Herein, we report on the second harmonic generation (SHG) properties of the compounds, which display remarkably strong, type I phase-matchable SHG response with high laser-induced damage thresholds (up to ∼3 GW/cm2). The second-order nonlinear susceptibility, χS(2), was determined to be 125.3 ± 10.5 pm/V (1), (161.0 ± 14.5) pm/V (2), 143.0 ± 13.5 pm/V (3), and 57.2 ± 5.5 pm/V (4). First-principles density functional theory electronic structure calculations indicate that the large SHG response is attributed to the high density of states in the valence band due to sp-hybridization of the Ge and I orbitals, a consequence of the lone pair activation.
    Full-text · Article · May 2015 · Journal of the American Chemical Society
  • [Show abstract] [Hide abstract]
    ABSTRACT: Quantification of spin-charge interconversion has become increasingly important in the fast-developing field of spin-orbitronics. Pure spin current generated by spin pumping acts as a sensitive probe for many bulk and interface spin-orbit effects, which has been indispensable for the discovery of many promising new spin-orbit materials. We apply spin pumping and inverse spin Hall effect experiments, as a useful metrology, and study spin-orbit effects in a variety of metals and metal interfaces. We quantify the spin Hall effects in Ir and W using the conventional bilayer structures and discuss the self-induced voltage in a single layer of ferromagnetic permalloy. Finally, we extend our discussions to multilayer structures and quantitatively reveal the spin current flow in two consecutive normal metal layers.
    No preview · Article · May 2015 · Journal of Applied Physics
  • J. H. Song · Y. Cui · J. J. Lee · J. B. Ketterson
    [Show abstract] [Hide abstract]
    ABSTRACT: Using molecular-beam epitaxy, we grew a MnAs/GaAs multilayer on a GaAs(100) substrate and compared its magneto-transport characteristics to those of a single-layer MnAs thin film. The crystal orientation of the MnAs layers in both samples was type-B. M-H measurements revealed two-fold symmetric magnetic anisotropy on the surface with the easy and hard direction of magnetization. When the current flowed along the hard direction, the MnAs/GaAs multilayer exhibited negative magnetoresistance below Curie temperature; when the current flowed along the easy direction, it turned positive. We suggest that this peculiar anisotropic magneto-transport behavior in the multilayer originated from two-dimensional carrier confinement and spin-orbit coupling.
    No preview · Article · Apr 2015 · Journal of Applied Physics
  • [Show abstract] [Hide abstract]
    ABSTRACT: The static and dynamic magnetic responses of patterned ferromagnetic thin films are uniquely altered in the case of aperiodic patterns that retain long-range order (e.g., quasicrystals). We have fabricated permalloy wire networks based on periodic square antidot lattices (ADLs) distorted according to an aperiodic Fibonacci sequence applied to two lattice translations, d1 = 1618 nm and d2 = 1000 nm. The wire segment thickness is fixed at t = 25 nm, and the width W varies from 80 to 510 nm. We measured the DC magnetization between room temperature and 5 K. Room-temperature, narrow-band (9.7 GHz) ferromagnetic resonance (FMR) spectra were acquired for various directions of applied magnetic field. The DC magnetization curves exhibited pronounced step anomalies and plateaus that signal flux closure states. Although the Fibonacci distortion breaks the fourfold symmetry of a finite periodic square ADL, the FMR data exhibit fourfold rotational symmetry with respect to the applied DC magnetic field direction.
    No preview · Article · Apr 2015 · Journal of Applied Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A major focus within the field of magnonics involves the manipulation and control of spin-wave modes. This is usually done by patterning continuous soft magnetic films. Here, we report on work in which we use topographic modifications of a continuous magnetic thin film, rather than lithographic patterning techniques, to modify the ferromagnetic resonance spectrum. To demonstrate this technique we have performed in-plane, broadband, ferromagnetic resonance studies on a 100-nm-thick permalloy film sputtered onto a colloidal crystal with individual sphere diameters of 200 nm. Effects resulting from the, ideally, sixfold-symmetric underlying colloidal crystal were studied as a function of the in-plane field angle through experiment and micromagnetic modeling. Experimentally, we find two primary modes; the ratio of the intensities of these two modes exhibits a sixfold dependence. Detailed micromagnetic modeling shows that both modes are quasiuniform and nodeless in the unit cell but that they reside in different demagnetized regions of the unit cell. Our results demonstrate that topographic modification of magnetic thin films opens additional directions for manipulating ferromagnetic resonant excitations.
    Full-text · Article · Apr 2015 · Physical Review B
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new series of metal chalcogenides with the formula Ba6Ag2.67+4δSn4.33−δS16-xSex (x = 0 for 1, x = 6.47 for 2, and x = 16 for 3) were synthesized. Compounds 1-3 are isotypic with a three-dimensional structure and crystallize in the noncentrosymmetric space group I4̅3d. The framework in 1 is constructed by alternative corner-sharing of AgS4 and SnS4 tetrahedra with Ba2+ cations distributed within the channels. The Ag+ atoms are disordered with two neighboring silver sites trapped in various coordination environments. Selected area electron diffraction (SAED) patterns from samples of 1 indicate that the structural lattice is ordered without evidence of long-range ordering. High resolution electron microscopy (HREM) images of 1 along the [001] direction display the body-centered arrangement of barium atoms and the periodic appearance of lines between barium atoms that correspond to part of the array of disordered silver atoms. Within the sulfide composition range, the solid solutions are Ba6Ag2.67+4δSn4.33−δS16 with δ = 0.13 for 1, 0.31 for 1a, and 0.33 for 1b; the crystal colors range from dark-red to orange and yellow, respectively. All compounds are transparent in the mid-infrared region and have absorption edges ranging from 1.27 to 2.37 eV. The significant second harmonic generation (SHG) intensities of the five materials are optimized at wavelengths ranging from 600 to 800 nm. The outstanding ones are 1a and 2 which display strong intensities 4.4-11.6 times and 2.2-10.4 times that of AgGaSe2 in the ranges 600-700 nm and 675-800 nm, respectively. Raman spectroscopic characterization is reported.
    No preview · Article · Feb 2015 · Chemistry of Materials
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the spin-wave propagation in a micro-structured yttrium iron garnet waveguide of $40$ nm thickness. Utilizing spatially-resolved Brillouin light scattering microscopy, an exponential decay of the spin-wave amplitude of $(10.06 \pm 0.83)$ $\mu$m was observed. This leads to an estimated Gilbert damping constant of $\alpha=(8.79\pm 0.73)\times 10^{-4}$, which is larger than damping values obtained through ferromagnetic resonance measurements in unstructured films. The theoretically calculated spatial interference of waveguide modes was compared to the spin-wave pattern observed experimentally by means of Brillouin light scattering spectroscopy.
    Full-text · Article · Dec 2014 · Journal of Applied Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The various decay mechanisms of excitons in cuprous oxide (Cu2O) are highly sensitive to defects which can relax selection rules. Here we report cryogenic hyperspectral imaging of exciton luminescence from cuprous oxide crystals grown via the floating zone method showing the samples have few defects. Some locations, however, show strain splitting of the 1s orthoexciton triplet polariton luminescence. Strain is reduced by annealing. In addition, annealing causes annihilation of oxygen and copper vacancies, which leads to a negative correlation between luminescence of unlike vacancies.
    Full-text · Article · Dec 2014 · Journal of Luminescence
  • Source
    Shi-Qiang Li · Kazuaki Sakoda · John B. Ketterson · Robert P. H. Chang
    [Show abstract] [Hide abstract]
    ABSTRACT: In the nanophotonics community, there is an active discussion regarding the origin of the selective absorption/scattering of light by the resonances with nanorod arrays. Here we report a study of the resonances in ordered indium-tin-oxide (ITO) nanorod arrays from the perspective of waveguides. We discover that with only 2.4% geometrical coverage, the micron-length nanorod arrays strongly interact with light across an extra-wide band from visible to mid-infrared resulting in less than 10% transmission at the first order destructive interference. Simulations show excellent agreement with our experimental observation. Near-field profile obtained from simulation reveals the electric field is mainly localized on the surfaces of the nanorods at all the resonances. Theoretical analysis is then applied to explain the resonances and it was found that the resonances in the visible are different from those in the infrared. The former resonances are the result of the interference between guided wave and wave propagated in the free space, while the latter ones are standing wave formation determined by the length of nanorods and the propagating constant of the guided wave (antenna modes). These differences observed in the wavelength range studied are attributed to the unique permittivity dispersion of ITO, which monotonically decreases from positive to negative right at the near infrared. The simple analytical formulae developed can be used to predict and design the resonances, which can be subsequently applied to devices like wavelength-selective photodetector, modulators, and nanorod-based solar cells. The discussion in this report should apply equally well to other semiconductor nanorod/nanowire arrays and help to clarify experimental interpretations in those published systems.
    Preview · Article · Nov 2014

Publication Stats

12k Citations
1,909.64 Total Impact Points

Institutions

  • 1970-2015
    • Northwestern University
      • • Department of Physics and Astronomy
      • • Department of Chemistry
      • • Department of Electrical Engineering and Computer Science
      • • Center for AIDS Research
      Evanston, Illinois, United States
  • 2010
    • Rice University
      • Department of Chemistry
      Houston, Texas, United States
  • 2008-2010
    • Northwest University
      Evanston, Illinois, United States
  • 1963-2009
    • Argonne National Laboratory
      • • Division of Materials Science
      • • Division of Physics
      Lemont, Illinois, United States
  • 2002
    • Yerevan State University
      Ayrivan, Yerevan, Armenia
  • 1989-1992
    • University of Wisconsin - Milwaukee
      • Department of Physics
      Milwaukee, WI, United States
  • 1981
    • Technion - Israel Institute of Technology
      H̱efa, Haifa, Israel
  • 1969
    • Iowa State University
      Ames, Iowa, United States