Stefan Kloiber

Max Planck Institute of Psychiatry, München, Bavaria, Germany

Are you Stefan Kloiber?

Claim your profile

Publications (80)411.98 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Epigenetic processes, such as DNA methylation, and molecular chaperones, including FK506-binding protein 51 (FKBP51), are independently implicated in stress-related mental disorders and antidepressant drug action. FKBP51 associates with cyclin-dependent kinase 5 (CDK5), which is one of several kinases that phosphorylates and activates DNA methyltransferase 1 (DNMT1). We searched for a functional link between FKBP51 (encoded by FKBP5) and DNMT1 in cells from mice and humans, including those from depressed patients, and found that FKBP51 competed with its close homolog FKBP52 for association with CDK5. In human embryonic kidney (HEK) 293 cells, expression of FKBP51 displaced FKBP52 from CDK5, decreased the interaction of CDK5 with DNMT1, reduced the phosphorylation and enzymatic activity of DNMT1, and diminished global DNA methylation. In mouse embryonic fibroblasts and primary mouse astrocytes, FKBP51 mediated several effects of paroxetine, namely, decreased the protein-protein interactions of DNMT1 with CDK5 and FKBP52, reduced phosphorylation of DNMT1, and decreased the methylation and increased the expression of the gene encoding brain-derived neurotrophic factor (Bdnf). In human peripheral blood cells, FKBP5 expression inversely correlated with both global and BDNF methylation. Peripheral blood cells isolated from depressed patients that were then treated ex vivo with paroxetine revealed that the abundance of BDNF positively correlated and phosphorylated DNMT1 inversely correlated with that of FKBP51 in cells and with clinical treatment success in patients, supporting the relevance of this FKBP51-directed pathway that prevents epigenetic suppression of gene expression.
    Full-text · Article · Nov 2015
  • I Elbau · M Ising · M Uhr · L Schaaf · F Holsboer · S Lucae · S Kloiber

    No preview · Article · Sep 2015 · Pharmacopsychiatry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Weight gain during psychopharmacologic treatment has considerable impact on the clinical management of depression, treatment continuation, and risk for metabolic disorders. As no profound clinical risk factors have been identified so far, the aim of our analyses was to determine clinical risk factors associated with short-term weight development in 2 large observational psychopharmacologic treatment studies for major depression. Clinical variables at baseline (age, gender, depression psychopathology, anthropometry, disease history, and disease entity) were analyzed for association with percent change in body mass index (BMI; normal range, 18.5 to 25 kg/m(2)) during 5 weeks of naturalistic psychopharmacologic treatment in patients who had a depressive episode as single depressive episode, in the course of recurrent unipolar depression or bipolar disorder according to DSM-IV criteria. 703 patients participated in the Munich Antidepressant Response Signature (MARS) project, an ongoing study since 2002, and 214 patients participated in a study conducted at the University of Muenster from 2004 to 2006 in Germany. Lower BMI, weight-increasing side effects of medication, severity of depression, and psychotic symptoms could be identified as clinical risk factors associated with elevated weight gain during the initial treatment phase of 5 weeks in both studies. Based on these results, a composite risk score for weight gain consisting of BMI ≤ 25 kg/m(2), Hamilton Depression Rating Scale (17-item) score > 20, presence of psychotic symptoms, and administration of psychopharmacologic medication with potential weight-gaining side effects was highly discriminative for mean weight gain (F4,909 = 26.77, P = 5.14E-21) during short-term psychopharmacologic treatment. On the basis of our results, depressed patients with low to normal BMI, severe depression, or psychotic symptoms should be considered at higher risk for weight gain during acute antidepressant treatment. We introduce a new risk score that might be considered in psychopharmacologic decisions for the prevention of weight gain and resulting metabolic disorders. © Copyright 2015 Physicians Postgraduate Press, Inc.
    No preview · Article · Jun 2015 · The Journal of Clinical Psychiatry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: An association between lower educational attainment (EA) and an increased risk for depression has been confirmed in various western countries. This study examines whether pleiotropic genetic effects contribute to this association. Therefore, data were analyzed from a total of 9662 major depressive disorder (MDD) cases and 14 949 controls (with no lifetime MDD diagnosis) from the Psychiatric Genomics Consortium with additional Dutch and Estonian data. The association of EA and MDD was assessed with logistic regression in 15 138 individuals indicating a significantly negative association in our sample with an odds ratio for MDD 0.78 (0.75–0.82) per standard deviation increase in EA. With data of 884 105 autosomal common single-nucleotide polymorphisms (SNPs), three methods were applied to test for pleiotropy between MDD and EA: (i) genetic profile risk scores (GPRS) derived from training data for EA (independent meta-analysis on ~120 000 subjects) and MDD (using a 10-fold leave-one-out procedure in the current sample), (ii) bivariate genomic-relationship-matrix restricted maximum likelihood (GREML) and (iii) SNP effect concordance analysis (SECA). With these methods, we found (i) that the EA-GPRS did not predict MDD status, and MDD-GPRS did not predict EA, (ii) a weak negative genetic correlation with bivariate GREML analyses, but this correlation was not consistently significant, (iii) no evidence for concordance of MDD and EA SNP effects with SECA analysis. To conclude, our study confirms an association of lower EA and MDD risk, but this association was not because of measurable pleiotropic genetic effects, which suggests that environmental factors could be involved, for example, socioeconomic status.
    Full-text · Article · Apr 2015 · Molecular Psychiatry
  • [Show abstract] [Hide abstract]
    ABSTRACT: We analyzed the association of sleep quality and glucose metabolism in women after gestational diabetes (pGDM) and in women after normoglycemic pregnancy (controls). Data during pregnancy and a visit within the first 15 months after delivery were collected from 61 pGDM and 30 controls in a prospective cohort study. This included a medical history, physical examination, questionnaires (Pittsburgh Sleep Quality Index (PSQI), and Perceived Stress Scale (PSS)), and 5-point oral glucose tolerance test with insulin measurements to determine indices of insulin sensitivity and insulin secretion. We used Spearman correlation coefficients and multivariate regression models for analysis.9.3 ± 3.2 months after delivery, pGDM had significantly higher fasting and 2 h glucose levels and lower insulin sensitivity than controls. There was no significant difference in age, BMI and sleep quality as assessed with the PSQI between the two groups. The PSQI score correlated with the ogtt-2 h plasma glucose in pGDM (δ = 0.41; p = 0.0012), but not in controls. This association was confirmed with a multivariate linear regression model with adjustment for age, BMI and months post-delivery. Perceived stress was an independent risk factor (OR 1.12; 95% CI 1.02-1.23) for impaired sleep. Our findings suggest that post-delivery sleep quality significantly influences glucose tolerance in women after GDM and that impaired sleep is associated with increased stress perception. Measures to improve of sleep quality and reduce perceived stress should therefore be tested as additional strategies to prevent progression to type 2 diabetes after GDM. Copyright © 2015 Elsevier Ltd. All rights reserved.
    No preview · Article · Apr 2015 · Journal of Psychiatric Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is strongly associated with major depressive disorder (MDD) and various other diseases. Genome-wide association studies have identified multiple risk loci robustly associated with body mass index (BMI). In this study, we aimed to investigate whether a genetic risk score (GRS) combining multiple BMI risk loci might have utility in prediction of obesity in patients with MDD. Linear and logistic regression models were conducted to predict BMI and obesity, respectively, in three independent large case-control studies of major depression (Radiant, GSK-Munich, PsyCoLaus). The analyses were first performed in the whole sample and then separately in depressed cases and controls. An unweighted GRS was calculated by summation of the number of risk alleles. A weighted GRS was calculated as the sum of risk alleles at each locus multiplied by their effect sizes. Receiver operating characteristic (ROC) analysis was used to compare the discriminatory ability of predictors of obesity. In the discovery phase, a total of 2,521 participants (1,895 depressed patients and 626 controls) were included from the Radiant study. Both unweighted and weighted GRS were highly associated with BMI (P <0.001) but explained only a modest amount of variance. Adding 'traditional' risk factors to GRS significantly improved the predictive ability with the area under the curve (AUC) in the ROC analysis, increasing from 0.58 to 0.66 (95% CI, 0.62-0.68; χ(2) = 27.68; P <0.0001). Although there was no formal evidence of interaction between depression status and GRS, there was further improvement in AUC in the ROC analysis when depression status was added to the model (AUC = 0.71; 95% CI, 0.68-0.73; χ(2) = 28.64; P <0.0001). We further found that the GRS accounted for more variance of BMI in depressed patients than in healthy controls. Again, GRS discriminated obesity better in depressed patients compared to healthy controls. We later replicated these analyses in two independent samples (GSK-Munich and PsyCoLaus) and found similar results. A GRS proved to be a highly significant predictor of obesity in people with MDD but accounted for only modest amount of variance. Nevertheless, as more risk loci are identified, combining a GRS approach with information on non-genetic risk factors could become a useful strategy in identifying MDD patients at higher risk of developing obesity.
    Full-text · Article · Apr 2015 · BMC Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: We read with great interest the study published by van Varsseveld et al. (van Varsseveld et al., 2015) on the relationship between IGF-I concentrations and depression in elderly subjects. The authors report on 1188 participants ≥ 65 years from a Dutch cohort study in which high IGF-I levels in men and low IGF-I levels in women were associated with prevalent depression. However, in the three-year follow-up period, no predictive associations between IGF-I levels and depressive disorder remained in men and in women (except for one association in women indicating that mid-range concentrations of IGF-I as compared to high IGF-I levels decreased the probability of minor depression). Therefore the authors conclude that IGF-I may play an important role in acute depression. On one hand, recently published findings from the Munich Antidepressant Response Signature (MARS) project underscore this notion regarding the importance of IGF-I in acute depression: In this study, we observed higher IGF-I levels at admission and after 6 weeks of treatment in 78 depressed inpatients compared to 92 healthy controls (Kopczak et al., 2015). Additionally, IGF-I levels at admission were higher in non-remitters after 6 weeks of psychopharmacological treatment than in remitters indicating even a potential role as a predictor for therapy response. On the other hand, we would like to strengthen the point that IGF-I may not only play a role in acute depression, but also as a predictor of depression per se. In our epidemiological study in the SHIP (Study of Health in Pomerania) cohort studying 3141 subjects with a similar study design and similar models as in the presented study, we observed high IGF-I levels in men and low IGF-I levels in women to be predictive for the incidence of depressive disorders in the 5-year follow-up period (Sievers et al., 2014) which was not seen by van Varsseveld et al. It is not clear why these results could not be confirmed in the Dutch cohort in elderly subjects. However, we believe that the results of the presented study in conjunction with previous and the studies of our group clearly emphasizes a yet to be elucidated role of IGF-I in depression and the need for further research of its relevance for etiology, prediction and therapy response.
    No preview · Article · Apr 2015 · Psychoneuroendocrinology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Psychotropic medications target glycogen synthase kinase 3β (GSK3β), but the functional integration with other factors relevant for drug efficacy is poorly understood. We discovered that the suggested psychiatric risk factor FK506 binding protein 51 (FKBP51) increases phosphorylation of GSK3β at serine 9 (pGSK3β(S9)). FKBP51 associates with GSK3β mainly through its FK1 domain; furthermore, it also changes GSK3β's heterocomplex assembly by associating with the phosphatase PP2A and the kinase cyclin-dependent kinase 5. FKBP51 acts through GSK3β on the downstream targets Tau, β-catenin and T-cell factor/lymphoid enhancing factor (TCF/LEF). Lithium and the antidepressant (AD) paroxetine (PAR) functionally synergize with FKBP51, as revealed by reporter gene and protein association analyses. Deletion of FKBP51 blunted the PAR- or lithium-induced increase in pGSK3β(S9) in cells and mice and attenuated the behavioral effects of lithium treatment. Clinical improvement in depressive patients was predicted by baseline GSK3β pathway activity and by pGSK3β(S9) reactivity to ex vivo treatment of peripheral blood mononuclear lymphocytes with lithium or PAR. In sum, FKBP51-directed GSK3β activity contributes to the action of psychotropic medications. Components of the FKBP51-GSK3β pathway may be useful as biomarkers predicting AD response and as targets for the development of novel ADs.Molecular Psychiatry advance online publication, 7 April 2015; doi:10.1038/mp.2015.38.
    Full-text · Article · Apr 2015 · Molecular Psychiatry
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We tested for interactions between body mass index (BMI) and common genetic variants affecting serum urate levels, genome-wide, in up to 42569 participants. Both stratified genome-wide association (GWAS) analyses, in lean, overweight and obese individuals, and regression-type analyses in a non BMI-stratified overall sample were performed. The former did not uncover any novel locus with a major main effect, but supported modulation of effects for some known and potentially new urate loci. The latter highlighted a SNP at RBFOX3 reaching genome-wide significant level (effect size 0.014, 95% CI 0.008-0.02, Pinter= 2.6 x 10-8). Two top loci in interaction term analyses, RBFOX3 and ERO1LB-EDARADD, also displayed suggestive differences in main effect size between the lean and obese strata. All top ranking loci for urate effect differences between BMI categories were novel and most had small magnitude but opposite direction effects between strata. They include the locus RBMS1-TANK (men, Pdifflean-overweight= 4.7 x 10-8), a region that has been associated with several obesity related traits, and TSPYL5 (men, Pdifflean-overweight= 9.1 x 10-8), regulating adipocytes-produced estradiol. The top-ranking known urate loci was ABCG2, the strongest known gout risk locus, with an effect halved in obese compared to lean men (Pdifflean-obese= 2 x 10-4). Finally, pathway analysis suggested a role for N-glycan biosynthesis as a prominent urate-associated pathway in the lean stratum. These results illustrate a potentially powerful way to monitor changes occurring in obesogenic environment.
    Full-text · Article · Mar 2015 · PLoS ONE

  • No preview · Article · Mar 2015 · European Psychiatry
  • [Show abstract] [Hide abstract]
    ABSTRACT: We analyzed insulin-like growth factor I (IGF-I) in serum of 78 inpatients with depression and 92 healthy controls. Patients were selected according to remission status after 6 weeks of antidepressant treatment with remission defined by Hamilton depression rating scale (HAM-D) 21-item score <10 (39 remitters and 39 non-remitters). IGF-I was analyzed in patients at admission and after 6 weeks of psychopharmacological treatment. IGF-I levels were compared between patients and controls and between remitters and non-remitters with general linear model using age, gender, and body mass index as covariates. In patients, IGF-I levels were significantly higher at admission (p=3.29E-04) and in week 6 (p=0.002) compared to controls. Furthermore, non-remitters showed significantly higher IGF-I levels at admission (p=0.046) and a trend for higher IGF-I levels in week 6 (p=0.11) compared to remitters. In remitters change in IGF-I levels during treatment was significantly correlated with change in cortisol levels (p=0.019). A genetic association analysis of polymorphisms in 10 genes contributing to the IGF-I system (IGF1, IGF1R, IGFBP1 to IGFBP7, and IGFBPL1) in the currently largest genetic databases for major depression (Psychiatric Genomics Consortium) revealed nominal associations with susceptibility for depression and treatment response, although results did not remain significant after multiple testing correction. In our study, elevated IGF-I levels were significantly associated with depression and impaired treatment response. Based on these findings IGF-I signaling could play a role in the pathophysiology of depression and could possibly influence the response to antidepressant treatment. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
    No preview · Article · Jan 2015 · European Neuropsychopharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Clear evidence has linked dysregulated hypothalamus–pituitary–adrenocortical (HPA) axis function to the aetiology and pathophysiology of major depression (MD), as observed in the majority of patients. Increased stress reactivity and hyperactivity of the HPA axis seem characteristic for psychotic/melancholic depression, while the atypical subtype of depression has been connected with the opposing phenotypes. However, the underlying molecular-genetic mechanisms are poorly understood. In the present study, mouse lines selectively bred for extremes in stress reactivity (SR), i.e. presenting high (HR) or low (LR) corticosterone secretion in response to stressors, were used to characterise the molecular alterations on all levels of the HPA axis. Results were contrasted with clinical phenotypes of MD patients from the Munich Antidepressant Response Signature project, stratified according to their cortisol response in the Dex/CRH test. Distinct differences between HR and LR mice were found in the expression of HPA axis-related genes in the adrenals, pituitary and selected brain areas. Moreover, HR animals presented an enhanced adrenal sensitivity, increased stress-induced neuronal activation in the PVN and an overshooting Dex/CRH test response, whereas LR animals showed a blunted response in these paradigms. Interestingly, analogous neuroendocrine, morphometric, psychopathological and behavioural differences were observed between the respective high and low HPA axis responder groups of MD patients. Our findings suggests that (i) the SR mouse model can serve as a valuable tool to elucidate HPA axis-related mechanisms underlying affective disorders and (ii) a stratification of MD patients according to their HPA axis-related neuroendocrine function should be considered for clinical research and treatment.
    No preview · Article · Nov 2014 · Psychoneuroendocrinology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background: FK506 binding protein 51 (FKBP51) is an Hsp90 co-chaperone and regulator of the glucocorticoid receptor, and consequently of stress physiology. Clinical studies suggest a genetic link between FKBP51 and antidepressant response in mood disorders; however, the underlying mechanisms remain elusive. The objective of this study was to elucidate the role of FKBP51 in the actions of antidepressants, with a particular focus on pathways of autophagy. Methods and findings: Established cell lines, primary neural cells, human blood cells of healthy individuals and patients with depression, and mice were treated with antidepressants. Mice were tested for several neuroendocrine and behavioral parameters. Protein interactions and autophagic pathway activity were mainly evaluated by co-immunoprecipitation and Western blots. We first show that the effects of acute antidepressant treatment on behavior are abolished in FKBP51 knockout (51KO) mice. Autophagic markers, such as the autophagy initiator Beclin1, were increased following acute antidepressant treatment in brains from wild-type, but not 51KO, animals. FKBP51 binds to Beclin1, changes decisive protein interactions and phosphorylation of Beclin1, and triggers autophagic pathways. Antidepressants and FKBP51 exhibited synergistic effects on these pathways. Using chronic social defeat as a depression-relevant stress model in combination with chronic paroxetine (PAR) treatment revealed that the stress response, as well as the effects of antidepressants on behavior and autophagic markers, depends on FKBP51. In human blood cells of healthy individuals, FKBP51 levels correlated with the potential of antidepressants to induce autophagic pathways. Importantly, the clinical antidepressant response of patients with depression (n = 51) could be predicted by the antidepressant response of autophagic markers in patient-derived peripheral blood lymphocytes cultivated and treated ex vivo (Beclin1/amitriptyline: r = 0.572, p = 0.003; Beclin1/PAR: r = 0.569, p = 0.004; Beclin1/fluoxetine: r = 0.454, p = 0.026; pAkt/amitriptyline: r = -0.416, p = 0.006; pAkt/PAR: r = -0.355, p = 0.021; LC3B-II/PAR: r = 0.453, p = 0.02), as well as by the lymphocytic expression levels of FKBP51 (r = 0.631, p<0.0001), pAkt (r = -0.515, p = 0.003), and Beclin1 (r = 0.521, p = 0.002) at admission. Limitations of the study include the use of male mice only and the relatively low number of patients for protein analyses. Conclusions: To our knowledge, these findings provide the first evidence for the molecular mechanism of FKBP51 in priming autophagic pathways; this process is linked to the potency of at least some antidepressants. These newly discovered functions of FKBP51 also provide novel predictive markers for treatment outcome, consistent with physiological and potential clinical relevance. Please see later in the article for the Editors' Summary.
    Full-text · Article · Nov 2014 · PLoS Medicine

  • No preview · Article · Oct 2014 · Biological psychiatry

  • No preview · Article · May 2014 · Diabetologie und Stoffwechsel
  • Source

    Full-text · Dataset · Mar 2014
  • A Kopczak · G. K. Stalla · M Uhr · S Lucae · S Kloiber

    No preview · Article · Mar 2014 · Experimental and Clinical Endocrinology & Diabetes
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Major depressive disorder (MDD) is one of the leading causes of global disability. It is a risk factor for noncompliance with medical treatment, with about 40% of patients not responding to currently used antidepressant drugs. The identification and clinical implementation of biomarkers that can indicate the likelihood of treatment response are needed in order to predict which patients will benefit from an antidepressant drug. While analyzing the blood plasma proteome collected from MDD patients before the initiation of antidepressant medication, we observed different fibrinogen alpha (FGA) levels between drug responders and nonresponders. These results were replicated in a second set of patients. Our findings lend further support to a recently identified association between MDD and fibrinogen levels from a large-scale study.
    Full-text · Article · Jan 2014 · Translational Psychiatry
  • PG Sämann · D Spieler · F Holsboer · M Czisch · S Kloiber

    No preview · Article · Sep 2013 · Pharmacopsychiatry
  • A Menke · S Kloiber · J Best · M Rex-Haffner · M Uhr · F Holsboer · EB Binder

    No preview · Article · Sep 2013 · Pharmacopsychiatry