Paul Walther

Universität Ulm, Ulm, Baden-Württemberg, Germany

Are you Paul Walther?

Claim your profile

Publications (161)658.54 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: M2 macrophages showed large endocytotic structures, very different from classical macropinosomes that we named megapinosomes. As observed in the scanning electron microscope, megapinosome formation started with a large (diameter of several micrometers) invagination of the plasma membrane. When the invagination was almost completed, the remaining opening was closed by an actinomorphous centripetal arrangement of many (about 50-100) microvilli-like structures. In transmission electron microscopy using high-pressure freezing, we observed that the megapinosome was filled with a trabecular meshwork that originated from the highly structured plasma membrane. The trabecular meshwork was topologically part of the cytosol and separated from the extracellular fluid by a lipid bilayer. According to ultrastructural features, we could define different phases of megapinosome formation and decay. Megapinosomes became more frequent when M2 macrophages were inoculated with human cytomegalovirus. We did not find megapinosome formation in M1 macrophages.
    No preview · Article · Jan 2016 · Histochemie
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transactive response DNA-binding protein 43 kD (TDP-43) is an aggregation-prone prion-like domain-containing protein and component of pathological intracellular aggregates found in most amyotrophic lateral sclerosis (ALS) patients. TDP-43 oligomers have been postulated to be released and subsequently nucleate TDP-43 oligomerization in recipient cells, which might be the molecular correlate of the systematic symptom spreading observed during ALS progression. We developed a novel protein complementation assay allowing quantification of TDP-43 oligomers in living cells. We demonstrate the exchange of TDP-43 between cell somata and the presence of TDP-43 oligomers in microvesicles/exosomes and show that microvesicular TDP-43 is preferentially taken up by recipient cells where it exerts higher toxicity than free TDP-43. Moreover, studies using microfluidic neuronal cultures suggest both anterograde and retrograde trans-synaptic spreading of TDP-43. Finally, we demonstrate TDP-43 oligomer seeding by TDP-43-containing material derived from both cultured cells and ALS patient brain lysate. Thus, using an innovative detection technique, we provide evidence for preferentially microvesicular uptake as well as both soma-to-soma "horizontal" and bidirectional "vertical" synaptic intercellular transmission and prion-like seeding of TDP-43.
    No preview · Article · Nov 2015 · The Journal of Cell Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ambroxol (Ax) is a frequently prescribed drug used to facilitate mucociliary clearance, but its mode of action is yet poorly understood. Here we show by X-ray spectroscopy that Ax accumulates in lamellar bodies (LBs), the surfactant storing, secretory lysosomes of type II pneumocytes. Using lyso- and acidotropic substances in combination with fluorescence imaging we confirm that these vesicles belong to the class of acidic Ca(2+) stores. Ax lead to a significant neutralization of LB pH, followed by intracellular Ca(2+) release, and to a dose-dependent surfactant exocytosis. Ax-induced Ca(2+) release was significantly reduced and slowed down by pretreatment of the cells with bafilomycin A1 (Baf A1), an inhibitor of the vesicular H(+) ATPase. These results could be nearly reproduced with NH3/NH4(+). The findings suggest that Ax accumulates within LBs and severely affects their H(+) and Ca(2+) homeostasis. This is further supported by an Ax-induced change of nanostructural assembly of surfactant layers. We conclude that Ax profoundly affects LBs presumably by disordering lipid bilayers and by acting as a weak base. The pH change triggers - at least in part - Ca(2+) release from stores and secretion of surfactant from type II cells. This novel mechanism of Ax as a lysosomal secretagogue may also play a role for its recently discussed use for lysosomal storage and other degenerative diseases.
    No preview · Article · Nov 2015 · Cell calcium
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The transcription factor NF-κB has been associated with a range of pathological conditions of the heart, mainly based on its function as a master regulator of inflammation and pro-survival factor. Here, we addressed the question what effects activation of NF-κB can have during murine heart development. We expressed a constitutively active (CA) mutant of IKK2, the kinase activating canonical NF-κB signaling, specifically in cardiomyocytes under the control of the α-myosin heavy chain promoter. Expression of IKK2-CA resulted in embryonic lethality around E13. Embryos showed defects in compact zone formation and the contractile apparatus, and overall were characterized by widespread inflammation with infiltration of myeloid cells. Gene expression analysis suggested an interferon type I signature, with increased expression of interferon regulatory factors. While apoptosis of cardiomyocytes was only increased at later stages, their proliferation was decreased early on, providing an explanation for the disturbed compact zone formation. Mechanistically, this could be explained by activation of the JAK/STAT axis and increased expression of the cell cycle inhibitor p21. A rescue experiment with an IκBα superrepressor demonstrated that the phenotype was dependent on NF-κB. We conclude that activation of NF-κB is detrimental during normal heart development due to excessive activation of pro-inflammatory pathways.
    Full-text · Article · Nov 2015 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We show that focused ion beam/scanning electron microscopy (FIB/SEM) tomography is an excellent method to analyze the three-dimensional structure of a fibroblast nucleus infected with human cytomegalovirus (HCMV). We found that the previously described infoldings of the inner nuclear membrane, which are unique among its kind, form an extremely complex network of membrane structures not predictable by previous two-dimensional studies. In all cases they contained further invaginations (2nd and 3rd order infoldings). Quantification revealed 5498HCMV capsids within two nuclear segments, allowing an estimate of 15,000 to 30,000 capsids in the entire nucleus five days post infection. Only 0.8% proved to be enveloped capsids which were exclusively detected in 1st order infoldings (perinuclear space). Distribution of the capsids between 1st, 2nd and 3rd order infoldings is in complete agreement with the envelopment/de-envelopment model for egress of HCMV capsids from the nucleus and we confirm that capsid budding does occur at the large infoldings. Based on our results we propose the pushing membrane model: HCMV infection induces local disruption of the nuclear lamina and synthesis of new membrane material which is pushed into the nucleoplasm, forming complex membrane infoldings in a highly abundant manner, which then may be also used by nucleocapsids for budding.
    Preview · Article · Nov 2015 · Viruses
  • Rainer Martin · Paul Walther · Karl-Heinz Tomaschko
    [Show abstract] [Hide abstract]
    ABSTRACT: Six species of sacoglossan sea slugs engulf and store chloroplasts from their algal food (kleptoplasts) in digestive gland cells for weeks. The question is unresolved as to why kleptoplasts are retained only in certain species, while in most others they are digested. We recently showed phagocytosis of algal chloroplasts by digestive cells in the long-term retention form Elysia timida. Chloroplasts with functional thylakoids and stroma, but devoid of inner and outer envelopes, had been taken up. The stored plastids in the slug cells had only a phagosome membrane. In the present study we report that in cells of another long-term retention species, Plakobranchus ocellatus, only one membrane is present. In contrast, chloroplasts in digestive cells of the non-retention form Thuridilla hopei were enveloped by inner and outer chloroplast membranes, as well as a phagosome membrane. On the other hand, Elysia viridis, which has been considered to be a short-term retention form, had some chloroplasts with and without chloroplast envelopes. The hypothesis is proposed that the absence of chloroplast envelopes in long-term retention forms help to avoid digestion.
    No preview · Article · Jul 2015 · Zoomorphology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Collective evidence argues that two members of the Nucleo-cytoplasmic large DNA viruses (NCLDVs) acquire their membrane from open membrane intermediates, postulated to be derived from membrane rupture. We now study membrane acquisition of the NCLDV African swine fever virus (ASFV). By electron tomography (ET) the virion assembles a single bilayer derived open membrane precursors that collect as ribbons in the cytoplasm. Biochemically, lumenal ER proteins are released into the cytosol, arguing that the open intermediates are ruptured ER membranes. ET shows that viral capsid assembles on the convex side of the open viral membrane to shape it into an icosahedron. The viral capsid is composed of tiny spikes with a diameter of ∼5 nm, connected to the membrane by a 6 nm wide structure displaying thin striations, as observed by several complementary EM imaging methods. Immature particles display an opening that closes after uptake of the viral genome and core proteins, followed by the formation of the mature virion. Together with our previous data this study shows a common principle of NCLDVs to build a single internal envelope from open membrane intermediates. Our data now provide biochemical evidence that these open intermediates result from rupture of a cellular membrane, the ER. This article is protected by copyright. All rights reserved.
    Full-text · Article · Jun 2015 · Cellular Microbiology
  • Witold Lapinski · Paul Walther · Marco Tschapka
    [Show abstract] [Hide abstract]
    ABSTRACT: Coexistence is thought to be based mainly on interspecific differences in the use of limiting resources and habitat choice, both being associated with specific traits. We studied morphological parameters within an assemblage of large wandering spider species in Costa Rica subdivided into three subguilds: (1) semi-aquatic species, (2) forestground dwellers and (3) vegetation dwellers. We hypothesized that the observed differences between the spider species in microhabitat preferences and abilities to adhere to smooth surfaces should be associated with corresponding morphological traits. The leg scopulation patterns were surprisingly complex and reflected the ecological preferences of the spiders. We found that the scopulation patterns and the ratio of tarsus to leg length (T/L) appeared to be most important: the poor adhesion abilities of the semi-aquatic species were reflected by the absence of tarsal claw tufts, and these species also showed the highest T/L ratio. The forest-ground dwellers had smaller claw tufts relative to body mass than the vegetation dwellers that consistently showed the best adhesion performance. This study presents the first family-spanning ecomorphological analysis of an assemblage of large tropical wandering spiders.
    No preview · Article · Jun 2015 · Zoomorphology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lipoarabinomannan (LAM) is a major cell wall component of Mycobacterium tuberculosis (Mtb). LAM specific human T-lymphocytes release interferon-γ (IFNγ) and have antimicrobial activity against intracellular Mtb suggesting that they contribute to protection. Therefore the induction of LAM-specific memory T-cells is an attractive approach for the design of a new vaccine against tuberculosis. A prerequisite for the activation of LAM-specific T-cells is the efficient uptake and transport of the glycolipid antigen to the CD1 antigen presenting machinery. Based on the hydrophobicity of LAM we hypothesized that packaging of LAM into liposomes will support the activation of T-lymphocytes. We prepared liposomes containing phosphatidylcholine, cholesterol, stearylated octaarginine and LAM via thin layer hydration method (LIPLAM). Flow cytometry analysis using fluorescently labelled LIPLAM showed an efficient uptake by antigen presenting cells. LAM delivered via liposomes was biologically active as demonstrated by the down-regulation of peroxisome proliferator activated receptor gamma (PPARγ) protein expression. Importantly, LIPLAM induced higher IFNγ production by primary human T-lymphocytes than purified LAM (2-16 times) or empty liposomes. These results suggest that the delivery of mycobacterial glycolipids via liposomes is a promising approach to promote the induction of M. tuberculosis specific T-cell responses. Copyright © 2015 Elsevier Ltd. All rights reserved.
    No preview · Article · May 2015 · Tuberculosis (Edinburgh, Scotland)
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis is a well-defined cellular process in which a cell dies, characterized by cell shrinkage and DNA fragmentation. In parasites like Leishmania, the process of apoptosis-like cell death has been described. Moreover upon infection, the apoptotic-like population is essential for disease development, in part by silencing host phagocytes. Nevertheless, the exact mechanism of how apoptosis in unicellular organisms may support infectivity remains unclear. Therefore we investigated the fate of apoptotic-like Leishmania parasites in human host macrophages. Our data showed-in contrast to viable parasites-that apoptotic-like parasites enter an LC3(+), autophagy-like compartment. The compartment was found to consist of a single lipid bilayer, typical for LC3-associated phagocytosis (LAP). As LAP can provoke anti-inflammatory responses and autophagy modulates antigen presentation, we analyzed how the presence of apoptotic-like parasites affected the adaptive immune response. Macrophages infected with viable Leishmania induced proliferation of CD4(+) T-cells, leading to a reduced intracellular parasite survival. Remarkably, the presence of apoptotic-like parasites in the inoculum significantly reduced T-cell proliferation. Chemical induction of autophagy in human monocyte-derived macrophage (hMDM), infected with viable parasites only, had an even stronger proliferation-reducing effect, indicating that host cell autophagy and not parasite viability limits the T-cell response and enhances parasite survival. Concluding, our data suggest that apoptotic-like Leishmania hijack the host cells´ autophagy machinery to reduce T-cell proliferation. Furthermore, the overall population survival is guaranteed, explaining the benefit of apoptosis-like cell death in a single-celled parasite and defining the host autophagy pathway as a potential therapeutic target in treating Leishmaniasis.
    Full-text · Article · Mar 2015 · Autophagy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we present a correlative microscopy workflow to combine detailed 3D fluorescence light microscopy data with ultrastructural information gained by 3D focused ion beam assisted scanning electron microscopy. The workflow is based on an optimized high pressure freezing/freeze substitution protocol that preserves good ultrastructural detail along with retaining the fluorescence signal in the resin embedded specimens. Consequently, cellular structures of interest can readily be identified and imaged by state of the art 3D confocal fluorescence microscopy and are precisely referenced with respect to an imprinted coordinate system on the surface of the resin block. This allows precise guidance of the focused ion beam assisted scanning electron microscopy and limits the volume to be imaged to the structure of interest. This, in turn, minimizes the total acquisition time necessary to conduct the time consuming ultrastructural scanning electron microscope imaging while eliminating the risk to miss parts of the target structure. We illustrate the value of this workflow for targeting virus compartments, which are formed in HIV-pulsed mature human dendritic cells. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
    Full-text · Article · Mar 2015 · Journal of Microscopy
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hypersecretion is the major symptom of functional neuroendocrine tumours. The mechanisms that contribute to this excessive secretion of hormones are still elusive. A key event in secretion is the exit of secretory products from the Golgi apparatus. ADP-ribosylation factor (Arf) GTPases are known to control vesicle budding and trafficking, and have a leading function in the regulation of formation of secretory granula at the Golgi. Here, we show that Arf1 is the predominant Arf protein family member expressed in the neuroendocrine pancreatic tumour cell lines BON and QGP-1. In BON cells Arf1 colocalizes with Golgi markers as well as chromogranin A, and shows significant basal activity. The inhibition of Arf1 activity or expression significantly impaired secretion of chromogranin A. Furthermore, we show that the insulin-like growth factor 1 (IGF-1), a major regulator of growth and secretion in BON cells, induces Arf1 activity. We found that activation of Arf1 upon IGF-1 receptor stimulation is mediated by MEK/ERK signalling pathway in BON and QGP-1 cells. Moreover, the activity of Arf1 in BON cells is mediated by autocrinely secreted IGF-1, and concomitantly, autocrine IGF1 secretion is maintained by Arf1 activity. In summary, our data indicate an important regulatory role for Arf1 at the Golgi in hypersecretion in neuroendocrine cancer cells. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
    Full-text · Article · Feb 2015 · Journal of Cellular and Molecular Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in components of the molecular motor dynein/dynactin lead to neurodegenerative diseases of the motor system or atypical parkinsonism. These mutations are associated with prominent accumulation of vesicles involved in autophagy and lysosomal pathways, and with protein inclusions. Whether alleviating these defects would affect motor symptoms remain unknown. Here we show that a mouse model expressing low levels of disease linked-G59S mutant dynactin p150(Glued) develops motor dysfunction more than 8 months before loss of motor neurons or dopaminergic degeneration is observed. Abnormal accumulation of autophagosomes and protein inclusions were efficiently corrected by lowering dietary protein content, and this was associated with transcriptional upregulations of key players in autophagy. Most importantly this dietary modification partially rescued overall neurological symptoms in these mice after onset. Similar observations were made in another mouse strain carrying a point mutation in the dynein heavy chain gene. Collectively, our data suggest that stimulating the autophagy/lysosomal system through appropriate nutritional intervention has significant beneficial effects on motor symptoms of dynein/dynactin diseases even after symptom onset. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    No preview · Article · Dec 2014 · Human Molecular Genetics

  • No preview · Article · Oct 2014
  • Source

    Full-text · Dataset · Aug 2014
  • Source

    Full-text · Article · Jul 2014 · Alzheimer's and Dementia
  • [Show abstract] [Hide abstract]
    ABSTRACT: TAR DNA-binding protein 43 (TDP-43) is one of the neuropathological hallmarks in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). It is present in patients' blood and cerebrospinal fluid (CSF); however, the source and clinical relevance of TDP-43 measurements in body fluids is uncertain. We investigated paired CSF and serum samples, blood lymphocytes, brain urea fractions and purified exosomes from CSF for TDP-43 by one- (1D), and two-dimensional (2D) Western immunoblotting (WB) and quantitative mass spectrometry (MRM) in patients with ALS, FTLD and non-neurodegenerative diseases. By means of 2D-WB we were able to demonstrate a similar isoform pattern of TDP-43 in lymphocytes, serum and CSF in contrast to that of brain urea fractions with TDP-43 pathology. We found that the TDP-43 CSF to blood concentration ratio is about 1:200. As a possible brain specific fraction we found TDP-43 in exosome preparations from CSF by immunoblot and MRM. We conclude that TDP-43 in CSF originates mainly from blood. Measurements of TDP-43 in CSF and blood are of minor importance as a diagnostic tool, but may be important for monitoring therapy effects of TDP-43 modifying drugs.
    No preview · Article · May 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepcidin is the central regulator of iron homeostasis and altered hepcidin signalling results in both hereditary and acquired iron overload. While the association between iron overload and development of end-stage liver disease is well established, the underlying mechanisms are largely unknown. To improve that, we analyzed hepcidin knockout (KO) mice as a model of iron-overload associated liver disease. Hepcidin wild type (WT) and KO mice fed with 3% carbonyl iron-containing diet starting at one month of age were compared to age-matched animals kept on standard chow. Liver histology and serum parameters were used to assess the extent of liver injury and fibrosis. Iron distribution was determined by subcellular fractionation and electron microscopy. Among mice kept on iron-rich diet, 6 months old hepcidin KO mice (vs. WT) displayed profound hepatic iron overload (3186±411 vs. 1045±159 μg/mg tissue, p< 0.005), elevated liver enzymes (ALT: KO 128±6, WT 56±5 IU/l, p< 0.05), mild hepatic inflammation and hepatocellular apoptosis. Twelve, but not six months old KO mice fed with iron-rich diet developed moderate liver fibrosis. The liver injury was accompanied by a marked lysosomal iron overload and lysosomal fragility with release of cathepsin B into the cytoplasm. Increased p62 levels and autofluorescent iron complexes suggested impaired protein degradation. As a mechanism leading to lysosomal iron overload, the autophagy (lysosomal influx) was increased. Hepcidin KO mice represent a novel model of iron overload-related liver diseases and implicate lysosomal injury as a crucial event in iron toxicity.
    No preview · Article · May 2014 · Journal of Hepatology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Naturally occurring fragments of the abundant semen proteins prostatic acid phosphatase (PAP) and semenogelins form amyloid fibrils in vitro. These fibrils boost HIV infection and may play a key role in the spread of the AIDS pandemic. However, the presence of amyloid fibrils in semen remained to be demonstrated. Here, we use state of the art confocal and electron microscopy techniques for direct imaging of amyloid fibrils in human ejaculates. We detect amyloid aggregates in all semen samples and find that they partially consist of PAP fragments, interact with HIV particles and increase viral infectivity. Our results establish semen as a body fluid that naturally contains amyloid fibrils that are exploited by HIV to promote its sexual transmission.
    Full-text · Article · Feb 2014 · Nature Communications
  • M Wilkat · E Herdoiza · V Forsbach-Birk · P Walther · A Essig
    [Show abstract] [Hide abstract]
    ABSTRACT: Chlamydia (C.) abortus is a widely spread pathogen among ruminants that can be transmitted to women during pregnancy leading to severe systemic infection with consecutive abortion. As a member of the Chlamydiaceae, C. abortus shares the characteristic feature of an obligate intracellular biphasic developmental cycle with two morphological forms including elementary bodies (EBs) and reticulate bodies (RBs). In contrast to other chlamydial species, C. abortus ultrastructure has not been investigated yet. To do so, samples were fixed by high-pressure freezing and processed by different electron microscopic methods. Freeze-substituted samples were analysed by transmission electron microscopy, scanning transmission electron microscopical tomography and immuno-electron microscopy, and freeze-fractured samples were analysed by cryo-scanning electron microscopy. Here, we present three ultrastructural features of C. abortus that have not been reported up to now. Firstly, the morphological evidence that C. abortus is equipped with the type three secretion system. Secondly, the accumulation and even coating of whole inclusion bodies by membrane complexes consisting of multiple closely adjacent membranes which seems to be a C. abortus specific feature. Thirdly, the formation of small vesicles in the periplasmic space of RBs in the second half of the developmental cycle. Concerning the time point of their formation and the fact that they harbour chlamydial components, these vesicles might be morphological correlates of an intermediate step during the process of redifferentiation of RBs into EBs. As this feature has also been shown for C. trachomatis and C. pneumoniae, it might be a common characteristic of the family of Chlamydiaceae.
    No preview · Article · Feb 2014 · Histochemie

Publication Stats

4k Citations
658.54 Total Impact Points

Institutions

  • 2000-2015
    • Universität Ulm
      • • Clinic of Internal Medicine I
      • • Workgroup of Electron Microscopy
      Ulm, Baden-Württemberg, Germany
  • 1996-1997
    • Eawag: Das Wasserforschungs-Institut des ETH-Bereichs
      Duebendorf, Zurich, Switzerland