S Ramakrishna

International Institute of Information Technology, Hyderabad, Bhaganagar, Telangana, India

Are you S Ramakrishna?

Claim your profile

Publications (4)12.8 Total impact

    [Show abstract] [Hide abstract]
    ABSTRACT: 3a is an accessory protein from SARS coronavirus that is known to play a significant role in the proliferation of the virus by forming tetrameric ion channels. Although the monomeric units are known to consist of three transmembrane (TM) domains, there are no solved structures available for the complete monomer. The present study proposes a structural model for the transmembrane region of the monomer by employing our previously tested approach, which predicts potential orientations of TM α-helices by minimizing the unfavorable contact surfaces between the different TM domains. The best model structure comprising all three α-helices has been subjected to MD simulations to examine its quality. The TM bundle was found to form a compact and stable structure with significant intermolecular interactions. The structural features of the proposed model of 3a account for observations from previous experimental investigations on the activity of the protein. Further analysis indicates that residues from the TM2 and TM3 domains are likely to line the pore of the ion channel, which is in good agreement with a recent experimental study. In the absence of an experimental structure for the protein, the proposed structure can serve as a useful model for inferring structure-function relationships about the protein.
    No preview · Article · Dec 2015 · Journal of Chemical Sciences
  • Siladitya Padhi · Siddabattula Ramakrishna · U Deva Priyakumar
    [Show abstract] [Hide abstract]
    ABSTRACT: An understanding of structure-function relationships of membrane proteins continues to be a challenging problem, owing to the difficulty in obtaining their structures experimentally. This study suggests a method for modeling membrane protein structures that can be used to generate a reliable initial conformation prior to the use of other approaches for sampling conformations. It involves optimizing the orientation of hydrophilic residues so as to minimize unfavorable contacts with the hydrophobic tails of the lipid bilayer. Starting with the optimized initial conformation for three different proteins modeled based on this method, two independent approaches have been used for sampling the conformational space of the proteins. Both approaches are able to predict structures reasonably close to experimental structures, indicating that the initial structure enables the sampling of conformations that are close to the native structure. Possible improvements in the method for making it broadly applicable to helical membrane proteins are discussed. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
    No preview · Article · Jan 2015 · Journal of Computational Chemistry
  • V Prathyusha · S Ramakrishna · U Deva Priyakumar
    [Show abstract] [Hide abstract]
    ABSTRACT: Transannular Diels-Alder (TADA) reactions that occur between the diene and dienophile moieties located on a single macrocyclic triene molecule have been recognized as effective synthetic routes toward realizing complex tricyclic molecules in a single step. In this paper, we report a comprehensive study on the TADA reactions of 14-membered cyclic triene macrocycles to yield A.B.C[6.6.6] tricycles using quantum chemical methods and using classical molecular dynamics simulations. A benchmark study has been performed to examine the reliability of the commonly used ab initio methods and hybrid density functional levels of theory in comparison with results from CCSD(T) calculations to accurately model TADA reactions. The energy barriers obtained using the M06-2X functional were found to be in quantitative agreement with the CCSD(T) level of theory using a reasonably large basis set. Conformational properties of the reactants have been systematically studied using extensive molecular dynamics (MD) simulations. For this purpose, model systems were conceived, and force field parameters corresponding to the dihedral terms in the potential energy function were obtained. Linear relationship between the activation energies corresponding to the TADA reactions and the probability of finding the reactant in certain conformational states was obtained. A clustering method along with optimizations at the molecular mechanics and density functional M06-2X levels has been used to locate the most stable conformation of each of the trienes.
    No preview · Article · Jun 2012 · The Journal of Organic Chemistry
  • [Show abstract] [Hide abstract]
    ABSTRACT: Identification of the structural and energetic determinants responsible for enhancing the stability of proteins is crucial. Hyperthermophilic proteins are naturally occurring proteins that exhibit high thermal stability and are good candidates for the investigation and understanding of structure-stability relationships. Sac7d from Sulfolobus acidocaldarius and Sso7d from Sulfolobus solfactaricus are two homologous hyperthermophilic proteins that were shown to be quite stable at high temperatures. Molecular dynamics simulations at the nanosecond time scale at different temperatures were performed to examine the factors affecting their stability. The three-dimensional structures of these proteins were observed to be similar to the experimental structure at 300 and 360 K but were found to undergo denaturation at 500 K. Both proteins exhibit similar unfolding pathways that correlates well with the calculated intermolecular interaction energies. The differential dynamic behaviors of these molecules at different temperatures were examined. Structural and energetic analysis of the contributions of salt bridges indicates a stabilizing effect at higher temperatures. However, the lifetimes of the salt bridges were found to be quite short, and several new salt bridges formed at 500 K supporting previous studies that the desolvation penalty due to the formation of salt bridges decreases at elevated temperatures. Hydrophobic interactions, which decrease with increase in temperature, were also found to be crucial in the stability of these proteins. Overall, the study shows that a balance among the salt bridge interactions, hydrophobic interactions, and solvent properties is primarily responsible for the high thermal stability of this class of proteins.
    No preview · Article · Feb 2010 · The Journal of Physical Chemistry B