Jeffrey M Friedman

Howard Hughes Medical Institute, Ашбърн, Virginia, United States

Are you Jeffrey M Friedman?

Claim your profile

Publications (132)1544.76 Total impact

  • Alexander R Nectow · Mats I Ekstrand · Jeffrey M Friedman
    [Show abstract] [Hide abstract]
    ABSTRACT: Retro-TRAP (translating ribosome affinity purification) technology enables the synthesis of molecular and neuroanatomical information through the use of transgenic and viral approaches. In contrast to other methods that are used to profile neural circuits such as laser-capture microdissection and FACS, Retro-TRAP is a high-throughput methodology that requires minimal specialized instrumentation. Retro-TRAP uses an anti-GFP ribosomal tag (expressed virally or using transgenesis) to immunoprecipitate translating mRNAs from any population of neurons that express GFP. The protocol detailed here describes the rapid extraction of molecular information from neural circuits in mice using retrograde-tracing GFP-expressing viruses. This approach can be used to identify novel cell types, as well as to molecularly profile cell types for which Cre-driver lines are available, in defined presynaptic loci. The current protocol describes a method for extracting translating mRNA from any neural circuit accessible by stereotaxic injection and manual dissection, and it takes 2-4 weeks. Although it is not described here, this mRNA can then be used in downstream processing applications such as quantitative PCR (qPCR) and high-throughput RNA sequencing to obtain 'molecular connectomic' information.
    No preview · Article · Sep 2015 · Nature Protocol
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Summary Leptin is a hormone produced by the adipose tissue that acts in the brain, stimulating white fat breakdown. We find that the lipolytic effect of leptin is mediated through the action of sympathetic nerve fibers that innervate the adipose tissue. Using intravital two-photon microscopy, we observe that sympathetic nerve fibers establish neuro-adipose junctions, directly "enveloping" adipocytes. Local optogenetic stimulation of sympathetic inputs induces a local lipolytic response and depletion of white adipose mass. Conversely, genetic ablation of sympathetic inputs onto fat pads blocks leptin-stimulated phosphorylation of hormone-sensitive lipase and consequent lipolysis, as do knockouts of dopamine β-hydroxylase, an enzyme required for catecholamine synthesis. Thus, neuro-adipose junctions are necessary and sufficient for the induction of lipolysis in white adipose tissue and are an efferent effector of leptin action. Direct activation of sympathetic inputs to adipose tissues may represent an alternative approach to induce fat loss, circumventing central leptin resistance.
    Full-text · Article · Sep 2015 · Cell
  • [Show abstract] [Hide abstract]
    ABSTRACT: A major goal of modern protein chemistry is to create new proteins with different functions. One approach is to amalgamate secondary and tertiary structures from different proteins. This is difficult for several reasons, not the least of which is the fact that the junctions between secondary and tertiary structures are not degenerate and usually affect the function and folding of the entire complex. Here, we offer a solution to this problem by coupling a large combinatorial library of about 10(7) different N- and C-terminal junctions to a powerful system that selects for function. Using this approach, the entire Leptin and follicle-stimulating hormone (FSH) were inserted into an antibody. Complexes with full retention of function in vivo and in vitro, although rare, were found easily by using an autocrine selection system to search for hormonal activity. Such large diversity systems, when coupled to robust selection systems, should enable construction of novel therapeutic proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.
    No preview · Article · Aug 2015 · Chemistry & biology
  • Source
    Wenwen Zeng · Yi-Hsueh Lu · Jonah Lee · Jeffrey M Friedman
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study we set out to explain the differing effects of parabiosis with genetically diabetic (db) mice versus administration of recombinant leptin. Parabiosis of db mutant, which overexpress leptin, to wildtype (WT) or genetically obese (ob) mice has been reported to cause death by starvation, whereas leptin infusions do not produce lethality at any dose or mode of delivery tested. Leptin is not posttranslationally modified other than a single disulphide bond, raising the possibility that it might require additional factor(s) to exert the maximal appetite-suppressing effect. We reconfirmed the lethal effect of parabiosis of db mutant on WT mice and further showed that this lethality could not be rescued by administration of ghrelin or growth hormone. We then initiated a biochemical fractionation of a high-molecular-weight leptin complex from human plasma and identified clusterin as a major component of this leptin-containing complex. However, in contrast to previous reports, we failed to observe a leptin-potentiating effect of either exogenous or endogenous clusterin, and parabiosis of db clusterin(-/-) double-mutant to WT mice still caused lethality. Intriguingly, in parabiotic pairs of two WT mice, leptin infusion into one of the mice led to an enhanced starvation response during calorie restriction as evidenced by increased plasma ghrelin and growth-hormone levels. Moreover, leptin treatment resulted in death of the parabiotic pairs. These data suggest that the appetite suppression in WT mice after parabiosis to db mutants is the result of induced hyperleptinemia combined with the stress or other aspect(s) of the parabiosis procedure.
    Preview · Article · Jul 2015 · Proceedings of the National Academy of Sciences
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: [This corrects the article DOI: 10.1016/j.molmet.2015.02.002.].
    Full-text · Article · Jun 2015 · Molecular Metabolism
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Leptin gene expression is highly correlated with cellular lipid content in adipocytes but the transcriptional mechanisms controlling leptin expression in vivo are poorly understood. In this report, we set out to identify cis- and trans-regulatory elements controlling leptin expression. Leptin-BAC luciferase transgenic mice combining with other computational and molecular techniques were used to identify transcription regulatory elements including a CCAAT-binding protein Nuclear Factor Y (NF-Y). The function of NF-Y in adipocyte was studied in vitro with 3T3-L1 cells and in vivo with adipocyte-specific knockout of NF-Y. Using Leptin-BAC luciferase mice, we showed that DNA sequences between -22 kb and +8.8 kb can confer quantitative expression of a leptin reporter. Computational analysis of sequences and gel shift assays identified a 32 bp sequence (chr6: 28993820-2899385) consisting a CCAAT binding site for Nuclear Factor Y (NF-Y) and this was confirmed by a ChIP assay in vivo. A deletion of this 32 bp sequence in the -22 kb to +8.8 kb leptin-luciferase BAC reporter completely abrogates luciferase reporter activity in vivo. RNAi mediated knockdown of NF-Y interfered with adipogenesis in vitro and adipocyte-specific knockout of NF-Y in mice reduced expression of leptin and other fat specific genes in vivo. Further analyses of the fat specific NF-Y knockout revealed that these animals develop a moderately severe lipodystrophy that is remediable with leptin therapy. These studies advance our understanding of leptin gene expression and show that NF-Y controls the expression of leptin and other adipocyte genes and identifies a new form of lipodystrophy.
    Full-text · Article · Feb 2015 · Molecular Metabolism
  • Jeffrey M Friedman · Christos S Mantzoros

    No preview · Article · Jan 2015 · Metabolism: clinical and experimental
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Means for temporally regulating gene expression and cellular activity are invaluable for elucidating underlying physiological processes and would have therapeutic implications. Here we report the development of a genetically encoded system for remote regulation of gene expression by low-frequency radio waves (RFs) or a magnetic field. Iron oxide nanoparticles are synthesized intracellularly as a GFP-tagged ferritin heavy and light chain fusion. The ferritin nanoparticles associate with a camelid anti-GFP-transient receptor potential vanilloid 1 fusion protein, αGFP-TRPV1, and can transduce noninvasive RF or magnetic fields into channel activation, also showing that TRPV1 can transduce a mechanical stimulus. This, in turn, initiates calcium-dependent transgene expression. In mice with stem cell or viral expression of these genetically encoded components, remote stimulation of insulin transgene expression with RF or a magnet lowers blood glucose. This robust, repeatable method for remote regulation in vivo may ultimately have applications in basic science, technology and therapeutics.
    Preview · Article · Dec 2014 · Nature Medicine
  • Source
    Zachary A Knight · Sarah F Schmidt · Kivanc Birsoy · Keith Tan · Jeffrey M Friedman
    [Show abstract] [Hide abstract]
    ABSTRACT: Red blood cells (RBC) must coordinate their rate of growth and proliferation with the availability of nutrients, such as iron, but the signaling mechanisms that link nutritional state to RBC growth are incompletely understood. We performed a screen for cell types that have high levels of signaling through mTORC1, a protein kinase that couples nutrient availability to cell growth. This screen revealed that reticulocytes show high levels of phosphorylated ribosomal protein S6, a downstream target of mTORC1. We found that mTORC1 activity in RBCs is regulated by dietary iron, and that genetic activation or inhibition of mTORC1 results in macrocytic or microcytic anemia, respectively. Finally, ATP competitive mTOR inhibitors reduced RBC proliferation and were lethal after treatment with phenylhydrazine, an inducer of hemolysis. These results identify the mTORC1 pathway as a critical regulator of RBC growth and proliferation, and establish that perturbations in this pathway result in anemia.
    Preview · Article · Sep 2014 · eLife Sciences
  • Source
    Keith Tan · Zachary A. Knight · Jeffrey M. Friedman
    [Show abstract] [Hide abstract]
    ABSTRACT: While the SCN controls the circadian clock, further evidence suggests the existence of a food-entrainable oscillator (FEO) that links behavior to changes in food availability such as during restricted feeding (RF). We found that the activity of AgRP/NPY neurons changed rhythmically during RF suggesting that these neurons are a component of the FEO. We next ablated AgRP/NPY neurons in neonates with diphtheria toxin resulting in the loss of ∼ 50% of AgRP/NPY neurons. Body weight and food intake were unchanged in adult animals after neonatal ablation, as were the responses to leptin treatment, leptin withdrawal, food deprivation and ghrelin treatment. However, ablated animals showed 30% mortality within 4 days of RF. Moreover, the recovery of body weight and food intake in surviving animals lagged behind controls with an absence of food anticipatory activity even after three days. These findings identify AgRP/NPY neurons as a key cellular component of the food-entrained oscillator.
    Preview · Article · Jul 2014 · Molecular Metabolism
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The complexity and cellular heterogeneity of neural circuitry presents a major challenge to understanding the role of discrete neural populations in controlling behavior. While neuroanatomical methods enable high-resolution mapping of neural circuitry, these approaches do not allow systematic molecular profiling of neurons based on their connectivity. Here, we report the development of an approach for molecularly profiling projective neurons. We show that ribosomes can be tagged with a camelid nanobody raised against GFP and that this system can be engineered to selectively capture translating mRNAs from neurons retrogradely labeled with GFP. Using this system, we profiled neurons projecting to the nucleus accumbens. We then used an AAV to selectively profile midbrain dopamine neurons projecting to the nucleus accumbens. By comparing the captured mRNAs from each experiment, we identified a number of markers specific to VTA dopaminergic projection neurons. The current method provides a means for profiling neurons based on their projections.
    Preview · Article · May 2014 · Cell
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest Sales of full-sugar fizzy drinks are almost triple those of diet versions, providing real-world confirmation of the laboratory finding that humans, as well as animals, prefer sugar to artificial sweeteners. However, it is not simply that sugary things taste better. Mice with a mutation that prevents them from perceiving sweet tastes still prefer the natural sugar sucrose over the artificial sweetener sucralose. This is because sugar, unlike artificial sweeteners, has nutritional value, and both humans and animals find it rewarding to consume foods with a high caloric content. Consuming sugar has been known to cause certain parts of the brain to release more of the chemical transmitter dopamine, which is used to signal reward, but exactly how this process produces a preference for sugar has been unclear. Now, Domingos et al. have revealed that a brain region called the lateral hypothalamus is responsible for this effect. This region of the brain—which helps to control appetite and which is also connected to the brain’s reward system—normally contains cells called MCH neurons. Domingos et al. show that the natural preference for sucrose over sucralose can be reversed by stimulating the MCH neurons with light, which in turn stimulates dopamine release in reward centers in the brain. Moreover, mutant mice that do not have any MCH neurons in the lateral hypothalamus show a reduced preference for sucrose over sucralose, compared to normal mice, and they release less dopamine than normal mice when they consume sucrose. By demonstrating that MCH neurons are both necessary and sufficient for sensing the nutritional value of sugar, these results provide new insights into the biological basis of sugar cravings. However, given the health implications of excessive sugar consumption, they may ultimately be used to find ways to make sugar less desirable, or to make artificial sweeteners more closely mimic the real thing. DOI: http://dx.doi.org/10.7554/eLife.01462.002
    Full-text · Article · Dec 2013 · eLife Sciences
  • Source
    Ana I. Domingos · Jake Vaynshteyn · Aylesse Sordillo · Jeffrey M. Friedman
    [Show abstract] [Hide abstract]
    ABSTRACT: Leptin-deficient patients report higher “liking” ratings for food, and leptin replacement therapy normalizes these ratings even before weight loss is achieved. Since animals cannot report their ratings, we studied the relationship between leptin and food reward in leptin-deficient ob/ob mice using a optogenetic assay that quantifies the reward value of sucrose. In this assay, mice chose between one sipper dispensing the artificial sweetener sucralose coupled to optogenetic activation of dopaminergic (DA) neurons, and another sipper dispensing sucrose. We found that the reward value of sucrose was high under a state of leptin deficiency, as well as at a dose of leptin that does not suppress food intake (12.5 ng/h). Treatment with higher doses of leptin decreased the reward value of sucrose before weight loss was achieved (100 ng/h), as seen in leptin-deficient patients. These results phenocopy in mice the behavior of leptin-deficient patients.
    Full-text · Article · Dec 2013 · Molecular Metabolism
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mechanisms controlling release of brain-derived neurotrophic factor (BDNF) in the mesolimbic dopamine reward pathway remain unknown. We report that phasic optogenetic activation of this pathway increases BDNF amounts in the nucleus accumbens (NAc) of socially stressed mice but not of stress-naive mice. This stress gating of BDNF signaling is mediated by corticotrophin-releasing factor (CRF) acting in the NAc. These results unravel a stress context-detecting function of the brain's mesolimbic circuit.
    Full-text · Article · Nov 2013 · Nature Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: WNIN/Obese (WNIN/Ob) rat a new mutant model of metabolic syndrome was identified in 1996 from an inbred Wistar rat strain, WNIN. So far several papers are published on this model highlighting its physical, biochemical and metabolic traits. WNIN/Ob is leptin resistant with unaltered leptin or its receptor coding sequences - the two well-known candidate genes for obesity. Genotyping analysis of F2 progeny (raised from WNIN/Ob × Fisher - 344) in the present study localized the mutation to a recombinant region of 14.15cM on chromosome 5. This was further corroborated by QTL analysis for body weight, which narrowed this region to 4.43 cM with flanking markers D5Rat256 & D5Wox37. Interval mapping of body weight QTL shows that the LOD score peak maps upstream of leptin receptor and shows an additive effect suggesting this as a novel mutation and signifying the model as a valuable resource for studies on obesity and metabolic syndrome.
    Full-text · Article · Oct 2013 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: Obesity and diabetes are particularly high in indigenous populations exposed to a Western diet and lifestyle. The prevalence of obesity, diabetes, hyperglycemia, dyslipidemia, and hypertension in one such population, the Micronesian island of Kosrae was described. Design and methods: Longitudinal screenings for metabolic traits were conducted on adult Kosraens ≥ 20 years of age in 1994 and again in 2001. Data was obtained on 3,106 Kosraens, comprising ∼80% of the adult population. Diabetes was diagnosed using World Health Organization guidelines. Prevalences of obesity, hyperglycemia, dyslipidemia, and hypertension were assessed. Results: The overall age-adjusted prevalence of diabetes increased from 14 to 21%. The most significant change observed in the population was increases in obesity and hyperglycemia, especially among young Kosraens and women. Obesity age-adjusted prevalence increased from 45 to 62%, and hyperglycemia age-adjusted prevalence increased from 19 to 44%. Of note, Kosraens as a group had unusually low high density lipoprotein (HDL) levels with 80% classified as low HDL by NCEP-ATPIII criteria, despite lacking the usually accompanying increase in triglycerides. Comparison to reports from other populations shows that Kosrae experiences one of the highest rates of obesity, hyperglycemia, and low HDL globally while maintaining relatively healthy levels of triglycerides. Conclusion: Our study shows a dramatic increase in obesity and hyperglycemia in Kosrae in just 7 years and forebodes significantly increased health risks for this part of the world.
    Full-text · Article · Apr 2013 · Obesity
  • Source
    Zhiying Li · Sarah F Schmidt · Jeffrey M Friedman
    [Show abstract] [Hide abstract]
    ABSTRACT: Treatment of ob/ob mice with a Cannabinoid receptor 1 (Cnr1) antagonist reduces food intake suggesting a role for endocannabinoid signaling in leptin action. We further evaluated the role of endocannabinoid signaling by analyzing the phenotype of Cnr1 knock-out ob/ob mice. Double mutant animals show a more severe growth retardation than ob/ob mice with similar levels of adiposity and reduced insulin-like growth factor 1 levels without alterations of growth hormone levels. The double mutant mice are also significantly more glucose intolerant than ob/ob mice. This is in contrast to treatment of ob/ob mice with a Cnr1 antagonist which had no effect on glucose metabolism suggesting a possible requirement for endocannabinoid signaling during development for normal glucose homeostasis. Double mutant animals also show similar leptin senstivity as ob/ob mice suggesting that there are developmental changes that compensate for the loss of Cnr1 signaling. These data establish a role for Cnr1 during development and suggest that compensatory changes during development may mitigate the requirement for Cnr1 in mediating the effects of leptin. The data further suggest a developmental role for Cnr1 to promote growth, regulate the GH/IGF-1 axis and improve β bell function and glucose homeostasis in the setting of leptin deficiency.
    Full-text · Article · Feb 2013 · Diabetes
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Ventral tegmental area (VTA) dopamine neurons in the brain's reward circuit have a crucial role in mediating stress responses, including determining susceptibility versus resilience to social-stress-induced behavioural abnormalities. VTA dopamine neurons show two in vivo patterns of firing: low frequency tonic firing and high frequency phasic firing. Phasic firing of the neurons, which is well known to encode reward signals, is upregulated by repeated social-defeat stress, a highly validated mouse model of depression. Surprisingly, this pathophysiological effect is seen in susceptible mice only, with no apparent change in firing rate in resilient individuals. However, direct evidence-in real time-linking dopamine neuron phasic firing in promoting the susceptible (depression-like) phenotype is lacking. Here we took advantage of the temporal precision and cell-type and projection-pathway specificity of optogenetics to show that enhanced phasic firing of these neurons mediates susceptibility to social-defeat stress in freely behaving mice. We show that optogenetic induction of phasic, but not tonic, firing in VTA dopamine neurons of mice undergoing a subthreshold social-defeat paradigm rapidly induced a susceptible phenotype as measured by social avoidance and decreased sucrose preference. Optogenetic phasic stimulation of these neurons also quickly induced a susceptible phenotype in previously resilient mice that had been subjected to repeated social-defeat stress. Furthermore, we show differences in projection-pathway specificity in promoting stress susceptibility: phasic activation of VTA neurons projecting to the nucleus accumbens (NAc), but not to the medial prefrontal cortex (mPFC), induced susceptibility to social-defeat stress. Conversely, optogenetic inhibition of the VTA-NAc projection induced resilience, whereas inhibition of the VTA-mPFC projection promoted susceptibility. Overall, these studies reveal novel firing-pattern- and neural-circuit-specific mechanisms of depression.
    Full-text · Article · Dec 2012 · Nature
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mammalian brain is composed of thousands of interacting neural cell types. Systematic approaches to establish the molecular identity of functional populations of neurons would advance our understanding of neural mechanisms controlling behavior. Here, we show that ribosomal protein S6, a structural component of the ribosome, becomes phosphorylated in neurons activated by a wide range of stimuli. We show that these phosphorylated ribosomes can be captured from mouse brain homogenates, thereby enriching directly for the mRNAs expressed in discrete subpopulations of activated cells. We use this approach to identify neurons in the hypothalamus regulated by changes in salt balance or food availability. We show that galanin neurons are activated by fasting and that prodynorphin neurons restrain food intake during scheduled feeding. These studies identify elements of the neural circuit that controls food intake and illustrate how the activity-dependent capture of cell-type-specific transcripts can elucidate the functional organization of a complex tissue.
    Preview · Article · Nov 2012 · Cell
  • Source

    Preview · Dataset · Oct 2012

Publication Stats

28k Citations
1,544.76 Total Impact Points

Institutions

  • 1992-2015
    • Howard Hughes Medical Institute
      Ашбърн, Virginia, United States
  • 1991-2015
    • The Rockefeller University
      • • Laboratory of Molecular Genetics
      • • Laboratory of Sensory Neuroscience
      • • Laboratory of Molecular Biology
      New York, New York, United States
  • 2003-2008
    • Harvard University
      Cambridge, Massachusetts, United States
  • 2002
    • University of Wisconsin, Madison
      • Department of Biochemistry
      Madison, MS, United States
  • 1996
    • University of Nice-Sophia Antipolis
      • Faculté des Sciences
      Valbonne, Provence-Alpes-Cote d'Azur, France