Michael A DiSano

University of Houston, Houston, Texas, United States

Are you Michael A DiSano?

Claim your profile

Publications (7)33 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The relationship between blood oxygenation level-dependent (BOLD) functional MRI (fMRI) signal and the underlying neural electrical activity in humans is a topic of intense interest to systems neuroscience. This relationship has generally been assumed to be invariant regardless of the brain region and the cognitive task being studied. We critically evaluated these assumptions by comparing the BOLD-fMRI response with local field potential (LFP) measurements during visually cued common noun and verb generation in 11 humans in whom 1210 subdural electrodes were implanted. As expected, power in the mid-gamma band (60-120 Hz) correlated positively (r(2) = 0.16, p < 10(-16)) and power in the beta band (13-30 Hz) correlated negatively (r(2) = 0.09, p < 10(-16)) with the BOLD signal change. Beta and mid-gamma band activity independently explain different components of the observed BOLD signal. Importantly, we found that the location (i.e., lobe) of the recording site modulates the relationship between the electrocorticographic (ECoG) signal and the observed fMRI response (p < 10(-16), F(21,1830) = 52.7), while the type of language task does not. Across all brain regions, ECoG activity in the gamma and beta bands explains 22% of the fMRI response, but if the lobar location is considered, 28% of the variance can be explained. Further evaluation of this relationship at the level of individual gyri provides additional evidence of differences in the BOLD-LFP relationship by cortical locus. This spatial variability in the relationship between the fMRI signal and neural activity carries implications for modeling of the hemodynamic response function, an essential step for interregional fMRI comparisons.
    Full-text · Article · Sep 2011 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • [Show abstract] [Hide abstract]
    ABSTRACT: Here we present a novel multimodal analysis of network connectivity in the language system. We assessed connectivity of Broca's area using tractography with diffusion tensor imaging (DTI), and with cortico-cortical evoked potentials (CCEPs) to measure the spread of artificial currents applied directly to human cortex. We found that both the amplitude and latency of CCEP currents significantly correlates (r(2)=0.41, p<10(-16)) with the number of DTI pathways connecting the stimulation and recording loci. This strategy of relating electrical information flow with the neural architecture will likely yield new insights into cognitive processes.
    No preview · Article · Aug 2011 · Computers in Biology and Medicine
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Electrocorticography (ECoG) and functional MRI (BOLD-fMRI) have been used previously to measure brain activity during working memory delay periods. These studies have separately reported oscillation changes in the theta (4-8 Hz) band and BOLD-fMRI increases during delay periods when information is maintained in memory. However, it is not known how intracranial cortical field potential (CFP) changes relate to BOLD-fMRI responses during delay periods. To answer this question, fMRI was obtained from six epilepsy patients during a visual working memory task. Then, following subdural macroelectrode implant, continuous ECoG was used to record CFPs during the same task. Time-frequency analyses showed delay period gamma band oscillation amplitude increases on electrodes located near fMRI activity, while in the theta band changes were higher for electrodes located away from fMRI activation. The amplitude of the ECoG gamma band response was significantly positively correlated with the fMRI response, while a negative correlation was found for the theta band. The findings are consistent with previous reports of local field potential (LFP) coupling in the gamma band with BOLD-fMRI responses during visual stimulation in monkeys, but are novel in that the relationship reported here persists after the disappearance of visual stimuli while information is being maintained in memory. We conclude that there is a relationship between BOLD-fMRI increases and human working memory delay period gamma oscillation increases and theta decreases. The spectral profile change provides a basis for comparison of working memory delay period BOLD-fMRI with field potential recordings in animals and other human intracranial EEG studies.
    Full-text · Article · Feb 2011 · NeuroImage
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Inappropriate response tendencies may be stopped via a specific fronto/basal ganglia/primary motor cortical network. We sought to characterize the functional role of two regions in this putative stopping network, the right inferior frontal gyrus (IFG) and the primary motor cortex (M1), using electocorticography from subdural electrodes in four patients while they performed a stop-signal task. On each trial, a motor response was initiated, and on a minority of trials a stop signal instructed the patient to try to stop the response. For each patient, there was a greater right IFG response in the beta frequency band ( approximately 16 Hz) for successful versus unsuccessful stop trials. This finding adds to evidence for a functional network for stopping because changes in beta frequency activity have also been observed in the basal ganglia in association with behavioral stopping. In addition, the right IFG response occurred 100-250 ms after the stop signal, a time range consistent with a putative inhibitory control process rather than with stop-signal processing or feedback regarding success. A downstream target of inhibitory control is M1. In each patient, there was alpha/beta band desynchronization in M1 for stop trials. However, the degree of desynchronization in M1 was less for successfully than unsuccessfully stopped trials. This reduced desynchronization on successful stop trials could relate to increased GABA inhibition in M1. Together with other findings, the results suggest that behavioral stopping is implemented via synchronized activity in the beta frequency band in a right IFG/basal ganglia network, with downstream effects on M1.
    Full-text · Article · Oct 2009 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies using diffusion tensor imaging (DTI) have advanced our knowledge of the organization of white matter subserving language function. It remains unclear, however, how DTI may be used to predict accurately a key feature of language organization: its asymmetric representation in one cerebral hemisphere. In this study of epilepsy patients with unambiguous lateralization on Wada testing (19 left and 4 right lateralized subjects; no bilateral subjects), the predictive value of DTI for classifying the dominant hemisphere for language was assessed relative to the existing standard-the intra-carotid Amytal (Wada) procedure. Our specific hypothesis is that language laterality in both unilateral left- and right-hemisphere language dominant subjects may be predicted by hemispheric asymmetry in the relative density of three white matter pathways terminating in the temporal lobe implicated in different aspects of language function: the arcuate (AF), uncinate (UF), and inferior longitudinal fasciculi (ILF). Laterality indices computed from asymmetry of high anisotropy AF pathways, but not the other pathways, classified the majority (19 of 23) of patients using the Wada results as the standard. A logistic regression model incorporating information from DTI of the AF, fMRI activity in Broca's area, and handedness was able to classify 22 of 23 (95.6%) patients correctly according to their Wada score. We conclude that evaluation of highly anisotropic components of the AF alone has significant predictive power for determining language laterality, and that this markedly asymmetric distribution in the dominant hemisphere may reflect enhanced connectivity between frontal and temporal sites to support fluent language processes. Given the small sample reported in this preliminary study, future research should assess this method on a larger group of patients, including subjects with bi-hemispheric dominance.
    Full-text · Article · Oct 2009 · NeuroImage

  • No preview · Article · Jul 2009 · NeuroImage
  • Michael DiSano · TM Ellmore · SE Dreyer · G Kalamangalam · J Slater · N Tandon

    No preview · Conference Paper · Jan 2009