Ryan Posgai

University of Dayton, Dayton, Ohio, United States

Are you Ryan Posgai?

Claim your profile

Publications (3)11.14 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Silver and titanium dioxide nanoparticles are known to induce oxidative stress in vitro and in vivo. Here we test if they impact development, mating success, and survivorship in Drosophila melanogaster, and if so, if these effects are reversible by antioxidants. Ingestion of nanotitanium dioxide during the larval stage of the life cycle showed no effects on development or survivorship, up to doses of 200 μg mL(-1). Conversely, ingestion of nanosilver had major dose, size, and coating-dependent effects on each of these aspects of life history. Each of these effects was partially or fully reversible by vitamin C. Larvae growing on nanosilver supplemented with vitamin C showed a greater than twofold increase in survivorship compared to flies reared on nanosilver alone, and a threefold increase in mating success. Vitamin C also rescued cuticular and pigmentation defects in nanosilver fed flies. Biochemical assays of superoxide dismutase and glutathione show these markers respond to nanotitanium dioxide and nanosilver induced oxidative stress, and this response is reduced by vitamin C. These results indicate that life history effects of nanosilver ingestion result from oxidative stress, and suggest antioxidants as a potential remediation for nanosilver toxicity. Conversely, the lack of nanotitanium dioxide life history toxicity shows that oxidative stress does not necessarily result in whole organism effects, and argues that nanoparticle toxicity needs to be examined at different levels of biological organization.
    No preview · Article · Jul 2011 · Chemosphere
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The growth of the nanotechnology industry and subsequent proliferation of nanoparticle types present the need to rapidly assess nanoparticle toxicity. We present a novel, simple and cost-effective nebulizer-based method to deliver nanoparticles to the Drosophila melanogaster respiratory system, for the purpose of toxicity testing. FluoSpheres, silver, and CdSe/ZnS nanoparticles of different sizes were effectively aerosolized, showing the system is capable of functioning with a wide range of nanoparticle types and sizes. Red fluorescent CdSe/ZnS nanoparticles were successfully delivered to the fly respiratory system, as visualized by fluorescent microscopy. Silver coated and uncoated nanoparticles were delivered in a toxicity test, and induced Hsp70 expression in flies, confirming the utility of this model in toxicity testing. This is the first method developed capable of such delivery, provides the advantage of the Drosophila health model, and can serve as a link between tissue culture and more expensive mammalian models in a tiered toxicity testing strategy.
    Full-text · Article · Oct 2009 · Science of The Total Environment
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Due to the intensive commercial application of silver nanoparticles (Ag NPs), risk assessment of this nanoparticle is of great importance. Our previous in vitro study demonstrated that Ag NPs caused DNA damage and apoptosis in mouse embryonic stem cells and fibroblasts. However, toxicity of Ag NPs in vivo is largely lacking. This study was undertaken to examine the toxic effects of well-characterized polysaccharide coated 10 nm Ag NPs on heat shock stress, oxidative stress, DNA damage and apoptosis in Drosophila melanogaster. Third instar larvae of D. melanogaster were fed a diet of standard cornmeal media mixed with Ag NPs at the concentrations of 50 and 100 microg/ml for 24 and 48 h. Ag NPs up-regulated the expression of heat shock protein 70 and induced oxidative stress in D. melanogaster. Malondialdehyde level, an end product of lipid peroxidation was significantly higher while antioxidant glutathione content was significantly lower in Ag NPs exposed organisms. Activities of antioxidant enzyme superoxide dismutase and catalase were also significantly higher in the organisms exposed to Ag NPs. Furthermore, Ag NPs up-regulated the cell cycle checkpoint p53 and cell signaling protein p38 that are involved in the DNA damage repair pathway. Moreover, activities of caspase-3 and caspase-9, markers of apoptosis were significantly higher in Ag NPs exposed organisms. The results indicate that Ag NPs in D. melanogaster induce heat shock stress, oxidative stress, DNA damage and apoptosis. This study suggests that the organism is stressed and thus warrants more careful assessment of Ag NPs using in vivo models to determine if chronic exposure presents developmental and reproductive toxicity.
    Full-text · Article · Oct 2009 · Toxicology and Applied Pharmacology