Are you John Nechtman?

Claim your profile

Publications (2)4.75 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Disordered angiogenesis is implicated in pulmonary vascular remodeling secondary to congenital heart diseases (CHD). However, the underlying genes are not well delineated. We showed previously that an ovine model of CHD with increased pulmonary blood flow (PBF, Shunt) has an "angiogenesis burst" between 1 and 4 wk of age. Thus we hypothesized that the increased PBF elicited a proangiogenic gene expression profile before onset of vessel growth. To test this we utilized microarray analysis to identify genes that could be responsible for the angiogenic response. Total RNA was isolated from lungs of Shunt and control lambs at 3 days of age and hybridized to Affymetrix gene chips for microarray analyses (n = 8/group). Eighty-nine angiogenesis-related genes were found to be upregulated and 26 angiogenesis-related genes downregulated in Shunt compared with control lungs (cutting at 1.2-fold difference, P < 0.05). We then confirmed upregulation of proangiogenic genes FGF2, Angiopoietin2 (Angpt2), and Birc5 at mRNA and protein levels and upregulation of ccl2 at mRNA level in 3-day Shunt lungs. Furthermore, we found that pulmonary arterial endothelial cells (PAEC) isolated from fetal lambs exhibited increased expression of FGF2, Angpt2, Birc5, and ccl2 and enhanced angiogenesis when exposed to elevated shear stress (35 dyn/cm²) compared with cells exposed to more physiological shear stress (20 dyn/cm²). Finally, we demonstrated that blocking FGF2, Angpt2, Birc5, or ccl2 signaling with neutralizing antibodies or small interfering RNA (siRNA) significantly decreased the angiogenic response induced by shear stress. In conclusion, we have identified a "proangiogenic" gene expression profile in a lamb model of CHD with increased PBF that precedes onset of pulmonary vascular remodeling. Our data indicate that FGF2, Angpt2, Birc5, and ccl2 may play important roles in the angiogenic response.
    Full-text · Article · Oct 2010 · Physiological Genomics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peroxisome proliferator-activated receptor type gamma (PPARgamma) is a subgroup of the PPAR transcription factor family. Recent studies indicate that loss of PPARgamma is associated with the development of pulmonary hypertension (PH). We hypothesized that the endothelial dysfunction associated with PPARgamma inhibition may play an important role in the disease process by altering cellular gene expression and signaling cascades. We utilized microarray analysis to determine if PPARgamma inhibition induced changes in gene expression in pulmonary arterial endothelial cells (PAEC). We identified 100 genes and expressed sequence tags (ESTs) that were upregulated by >1.5-fold and 21 genes and ESTs that were downregulated by >1.3-fold (P < 0.05) by PPARgamma inhibition. The upregulated genes can be broadly classified into four functional groups: cell cycle, angiogenesis, ubiquitin system, and zinc finger proteins. The genes with the highest fold change in expression: hyaluronan-mediated motility receptor (HMMR), VEGF receptor 2 (Flk-1), endothelial PAS domain protein 1 (EPAS1), basic fibroblast growth factor (FGF-2), and caveolin-1 in PAEC were validated by real time RT-PCR. We further validated the upregulation of HMMR, Flk-1, FGF2, and caveolin-1 by Western blot analysis. In keeping with the microarray results, PPARgamma inhibition led to re-entry of cell cycle at G(1)/S phase and cyclin C upregulation. PPARgamma inhibition also exacerbated VEGF-induced endothelial barrier disruption. Finally we confirmed the downregulation of PPARgamma and the upregulation of HMMR, Flk-1, FGF2, and Cav-1 proteins in the peripheral lung tissues of an ovine model of PH. In conclusion, we have identified an array of endothelial genes modulated by attenuated PPARgamma signaling that may play important roles in the development of PH.
    No preview · Article · Oct 2009 · Physiological Genomics