Qing Tang

Huazhong University of Science and Technology, Wu-han-shih, Hubei, China

Are you Qing Tang?

Claim your profile

Publications (11)16.13 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The administration of bone mesenchymal stem cells (BMSCs) could reverse experimental colitis, and the predominant mechanism in tissue repair seems to be related to their paracrine activity. BMSCs derived extracellular vesicles (BMSC-EVs), including mcirovesicles and exosomes, containing diverse proteins, mRNAs and micro-RNAs, mediating various biological functions, might be a main paracrine mechanism for stem cell to injured cell communication. We aimed to investigate the potential alleviating effects of BMSC-EVs in 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis model. Intravenous injection of BMSC-EVs attenuated the severity of colitis as evidenced by decrease of disease activity index (DAI) and histological colonic damage. In inflammation response, the BMSC-EVs treatment significantly reduced both the mRNA and protein levels of nuclear factor kappaBp65 (NF-κBp65), tumor necrosis factor-alpha (TNF-α), induciblenitric oxidesynthase (iNOS) and cyclooxygenase-2 (COX-2) in injured colon. Additionally, the BMSC-EVs injection resulted in a markedly decrease in interleukin-1β (IL-1β) and an increase in interleukin-10 (IL-10) expression. Therapeutic effect of BMSC-EVs associated with suppression of oxidative perturbations was manifested by a decrease in the activity of myeloperoxidase (MPO) and Malondialdehyde (MDA), as well as an increase in superoxide dismutase (SOD) and glutathione (GSH). BMSC-EVs also suppressed the apoptosis via reducing the cleavage of caspase-3, caspase-8 and caspase-9 in colitis rats. Data obtained indicated that the beneficial effects of BMSC-EVs were due to the down regulation of pro-inflammatory cytokines levels, inhibition of NF-κBp65 signal transduction pathways, modulation of anti-oxidant/ oxidant balance, and moderation of the occurrence of apoptosis.
    Preview · Article · Oct 2015 · PLoS ONE
  • [Show abstract] [Hide abstract]
    ABSTRACT: Adrenomedullin (AM) is a pivotal endogenous vasoactive peptide, which can maintain epithelial barrier function in inflammatory bowel disease. Myosin light chain kinase (MLCK)‑dependent phosphorylated myosin light chain kinase (p‑MLC) is a key regulator of intestinal barrier function. The aim of the present study was to investigate the effect and mechanism of AM on the intestinal epithelial barrier in a rat model of ulcerative colitis (UC) induced by 2,4,6‑trinitro‑benzene‑sulfonic acid (TNBS). A total of 21 male Sprague‑Dawley rats were randomly divided into the following three groups and administered different agents for 7 days: The normal group (water and saline), model group (TNBS and saline) and the AM group (TNBS and AM; 1.0 µg). The weight of rats was recorded every day. Serum tumor necrosis factor‑α (TNF‑α) and interleukin‑6 (IL‑6) levels were detected using ELISA kits. Colon tissue was collected for the assessment of histological alterations. The protein expression of MLCK, p‑MLC and zonula occludens‑1 (ZO‑1) was examined by western blot analysis. Intestinal epithelial tight junctions were examined using transmission electron microscopy. The results demonstrated that in colitis model rats, the expression of TNF‑α, IL‑6, MLCK and p‑MLC significantly increased compared with normal rats. In addition, the expression of ZO‑1 decreased (P<0.05) and intestinal epithelial cell permeability increased. Following AM administration, TNF‑α, IL‑6, MLCK and p‑MLC expression significantly decreased compared with the model rats, the expression of ZO‑1 increased (P<0.05) and intestinal epithelial cell permeability reduced. These data indicate a protective effect of AM on intestinal epithelial barrier dysfunction via suppression of inflammatory cytokines and downregulation of MLCK‑p‑MLC in TNBS‑induced UC. In conclusion, AM/MLCK‑p‑MLC may be an important signaling pathway in the occurrence and development of UC.
    No preview · Article · Jun 2015 · Molecular Medicine Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mesenchymal stem cells (MSCs) inhibit the immune response in vitro and prevent the induction of disease in certain experimental models. As a result, MSC‑mediated therapy is a rapidly growing field of research. However, the efficacy of MSCs in the treatment of inflammatory bowel disease (IBD) has remained to be determined. In the present study, rats with 2,4,6‑trinitrobenzene sulfonic acid (TNBS)‑induced colitis were injected with prepared MSCs (1x106) into the tail vein. Two weeks following intravenous MSC administration, the concentration of tumor necrosis factor‑α (TNF‑α) in the serum was measured by an ELISA. The protein expression of nuclear factor‑κB (NF‑κBp65) in the colonic mucosa was assessed by western blot analysis. mRNA expression of TNF‑α and NF‑κBp65 was determined by reverse‑transcription quantitative polymerase chain reaction. MSCs were shown to exert an immunomodulatory effect on TNBS‑induced colitis and may be of use in the treatment of IBD. In addition, modulation of the NF‑κB‑mediated pro‑inflammatory response may contribute to the underlying mechanism by which MSCs ameliorate the clinical and histological changes associated with IBD.
    No preview · Article · Dec 2014 · Molecular Medicine Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study was aimed to investigate the role of the delta-opioid receptor (DOR)-β-arrestin1-Bcl-2 signal transduction pathway in the pathogenesis of ulcerative colitis (UC) and the intervention effects of oxymatrine on UC. Forty Sprague-Dawley rats were divided into normal group, model group, oxymatrine-treated group and mesalazine-treated group (n=10 each) at random. The rat UC model was established by intra-colonic injection of trinitrobenzene sulfonic acid in the model group and two treatment groups. The rats in oxymatrine-treated group were subjected to intramuscular injection of oxymatrine [63 mg/(kg·day)] for 15 days, and those in mesalazine-treated group given mesalazine solution [0.5 g/(kg·day)] by gastric lavage for the same days. Animals in normal group and model group were administered 3 mL water by gastric lavage for 15 days. On the 16th day, after fasting for 24 h, the rats were sacrificed for the removal of colon tissues. The expression levels of DOR, β-arrestin1 and Bcl-2 were determined in colon tissues by immunohistochemistry and real-time quantitative polymerase chain reaction (RT-PCR), respectively. It was found that the expression levels of DOR, β-arrestin1 and Bcl-2 protein and mRNA were significantly increased in the model group as compared with the other groups (P<0.05). They were conspicuously decreased in both mesalazine-treated and oxymatrine-treated groups in contrast to the model group (P<0.05). No statistically significant difference was noted in these indices between mesalazine- and oxymatrinetreated groups (P>0.05). This study indicated that the DOR-β-arrestin1-Bcl-2 signal transduction pathway may participate in the pathogenesis of UC. Moreover, oxymatrine can attenuate the development of UC by regulating the DOR-β-arrestin1-Bcl-2 signal transduction pathway.
    No preview · Article · Dec 2014 · Journal of Huazhong University of Science and Technology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Qingre Zaoshi Liangxue Fang (QRZSLXF) is a Chinese medicinal herb recipe that is commonly prescribed for the treatment of ulcerative colitis. It includes 5 quality assured herbs: Sophora flavescens Aiton., Baphicacanthus cusia (Nees) Bremek., Bletilla striata Rchb.f., Glycyrrhiza uralensis Fisch. and Coptis chinensis Franch. The main phytochemical ingredient of QRZSLXF includes ammothamnine, sophocarpidine, liquiritin, berberine and indirubin. QRZSLXF has been clinically proven for use in the treatment of ulcerative colitis for over twenty years. In the past ten years, research has confirmed the therapeutic effect of QRZSLXF in ulcerative colitis and partially revealed its mechanism of action. Here, we further reveal the therapeutic mechanism of QRZSLXF in ulcerative colitis. To investigate the role of the DOR-β-arrestin1-Bcl-2 signal transduction pathway in ulcerative colitis and to determine the effects of QRZSLXF on this signal transduction pathway.
    No preview · Article · Mar 2014 · Journal of ethnopharmacology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accumulating evidence has established the use of mesenchymal stem cells (MSCs) as candidate cells for immunosuppressive therapy. Experimental studies have suggested that MSCs exert their immunomodulatory effects through the induction of regulatory T cells (Tregs) in vitro and in vivo. However, the interactions between MSCs and Tregs in inflammatory bowel disease (IBD) and whether MSCs can be used for the treatment of IBD remains to be elucidated. In this study, we aimed to investigate whether MSCs can be used for the treatment of IBD through the induction of Tregs. MSCs were isolated and identified by flow cytometry. The MSCs were transduced with a replication-defective recombinant lentiviral vector carrying GFP in order to be able to trace the injected cells in vivo. Prepared MSCs (1x106) were injected into rats with 2,4,6-trinitrobenzene sulfonic acid (TNBS)‑induced colitis via the tail vein; the control rats received phosphate-buffered saline (PBS) alone. Two weeks after the intravenous infusion, the frequency of CD4+CD25+Foxp3 cells in the peripheral blood was examined by flow cytometry. The colon was sectioned and analyzed for histopathological changes. Foxp3 mRNA expression was determined by real-time reverse-transcription polymerase chain reaction (qRT-PCR). In our study, the systemic infusion of MSCs significantly ameliorated the clinical and histopathologic severity of TNBS-induced colitis in contrast to the controls. There was an inverse regulation of mucosal and peripheral Foxp3 expression, suggesting that the MSCs redistributed the Tregs from the mucosa to the blood. Thus, MSCs exhibit immunomodulatory functions and may be used to ameliorate or treat IBD by redistributing regulatory T cells. Therefore, the interactions between transplanted bone marrow-derived MSCs and Tregs should be further investigated; MSCs have tremendous potential for use in the treatment of IBD.
    No preview · Article · Dec 2013 · International Journal of Molecular Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bone marrow-derived mesenchymal stem cells (BMSCs) are attractive candidates for tissue regeneration and immunoregulation in inflammatory bowel disease. However, their in vivo reparative capability is limited owing to barren efficiency of BMSCs to injury region. Stromal cell-derived factor (SDF-1) plays an important role in chemotaxis and stem cell homing through interaction with its specific receptor CXC chemokine receptor 4 (CXCR4). The present study was designed to investigate the role of SDF-1α/CXCR4 axis in the therapeutic effects of lentivirus-preconditioned BMSCs for 2,4,6-trinitrobenzene sulfonic acid (TNBS)-colitis rats. BMSCs were isolated from female Sprague-Dawley rats and identified by flow cytometry. Lentiviral transduction was applied to over-express CXCR4/GFP (Ad-CXCR4-BMSCs) or null/GFP (Ad-GFP-BMSCs). Efficacy of engraftment was determined by the presence of enhanced green fluorescent protein (GFP) positive cells. One week after intravenous administration, Ad-GFP-BMSCs failed to colonize in the inflamed colon and had no beneficial effect in TNBS-induced colitis. Instead, Ad-CXCR4-BMSCs signally ameliorated both clinical and microanatomical severity of colitis. Immunofluorescence and western blotting showed that Ad-CXCR4-BMSCs migrated toward inflamed colon was more efficient than Ad-GFP-BMSCs. The therapeutic effect of Ad-CXCR4-BMSCs was mediated by the suppression of pro-inflammatory cytokines and STAT3 phosphorylation in injured colon. Collectively, our data indicated that over-expression CXCR4 led to enhance in vivo mobilization and engraftment of BMSCs into inflamed colon where these cells can function as an anti-inflammatory and immunomodulatory component of the immune system in TNBS-induced colitis.
    No preview · Article · Oct 2013 · Journal of molecular histology
  • Qing Tang · Heng Fan · Zhexing Shou · Xingxing Liu
    [Show abstract] [Hide abstract]
    ABSTRACT: Objective: To study the effect of NOD2 on colitis pathogenesis in experimental rats, and discuss therapeutical effect and mechanism of kushenin injection (OMT) on colitis in experimental rats. Method: Fourty Sprague-Dawley (SD) rats were randomly divided into four groups: the normal control group, the model group, the SASP group, and the OMT group, with 10 rats in each group. Except the normal control group, models were established in the remaining three groups with TNBS. The OMT group was injected with kushenin injection, the SASP group was orally administered with mesalazine suspension, the model group and the normal group were orally administered with distilled water for 15 days. Colon lesion score and histological score of experimental rats were observed. Expression of NOD2, NF-kappaB p65 protein in rats colonic mucous was detected by immunohistochemistry. Expression of IL-6 in rat colon mucous was detected by ELISA. Result: Compared with normal control group, the expression of NOD2, NF-kappaB p65 and IL-6 in colonic mucosa of the model group were significantly increased (P < 0.01). The SASP group and the OMT group showed lower expressions of NOD2, NF-kappaB p65 and IL-6 in colonic mucosa than the model group (P < 0.01, P < 0.05). Conclusion: The over expression of colonic mucosa proteins NOD2 and NF-kappaB p65 and increasing secretion of IL-6 take part in the appearance and development of ulcerative colitis. OMT can attenuate ulcerative colitis and protect colonic mucosa by inhibiting expression of NOD2, NF-kappaB p65 and decreasing IL-6.
    No preview · Article · Sep 2012 · Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the β2-adrenoceptor (β2AR)-β-arrestin2-nuclear factor-κB (NF-κB) signal transduction pathway and the intervention effects of oxymatrine in a rat model of ulcerative colitis. Forty SD rats were randomly divided into four groups, which included the normal control group, the model group, the mesalazine group and the oxymatrine treatment group, with 10 rats per group. Experimental colitis induced with trinitrobenzene sulfonic acid (TNBS) was established in each group except the normal control group. The rats in the oxymatrine treatment group were treated with intramuscular injection of oxymatrine 63 mg/(kg·d) for 15 days and the rats in the mesalazine group were treated with mesalazine solution 0.5 g/(kg·d) by gastric lavage for 15 days. The rats in the normal control group and model group were treated with 3 mL water by gastric lavage for 15 days. Diarrhea and bloody stool were carefully observed. Histological changes in colonic tissue were examined on day 7 in 2 rats per group that were randomly selected. The expression of β2AR, β-arrestin2 and NF-κB p65 in colon tissue and spleen lymphocytes were detected with immunohistochemistry and Western immunoblotting techniques on day 16 after fasting for 24 h. Six rats died of lavage with 2 each in the normal control, the model group and the mesalazine group; and were not included in the analysis. The rats in the model group suffered from looser stool and bloody purulent stool after modeling. But in the oxymatrine and mesalazine groups, looser stool and bloody purulent stool reduced after treatment. And the colonic wall in the model group was thickened and the colon length shortened. The colon mucosa was congested in multiple areas with edema, erosion, superficial or linear ulcer and scar formation, while the intestinal mucosa injury reduced in the mesalazine and oxymatrine groups (P<0.01). In colonic mucosa and in spleen lymphocytes, compared with the normal control group, the expression of NF-κBp65 were significantly increased (P<0.01) in the model group while the expressions of β 2AR and β-arrestin2 were significantly decreased (P<0.01). Compared with the model group, the expression of NF-κ Bp65 was significantly decreased in the mesalazine group (P<0.01) and oxymatrine treatment group (P<0.01) while the expressions of β2AR and β-arrestin2 were significantly increased (P<0.01). There were no statistically significant differences in the expression of β2AR, β-arrestin2 and NF-κBp65 between the mesalazine group and oxymatrine group (P>0.05). The β2AR-β-arrestin2-NF-κB signal transduction pathway participated in the pathologic course of ulcerative colitis. Oxymatrine attenuated ulcerative colitis through regulating the β2AR-β-arrestin2-NF-κB signal transduction pathway.
    No preview · Article · Jul 2012 · Chinese Journal of Integrative Medicine
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of compound Sophorae Flavescentis Jiechangrong capsule (CSFJC) on the expression of nuclear factor-κB p65 (NF-κB p65) and signal transducer and activator of transcription 6 (STAT6) in the intestinal mucosa of patients with ulcerative colitis and the possible mechanism were investigated. Eighteen patients with ulcerative colitis were randomly divided into a traditional Chinese medicine (TCM) group (n = 11) treated by CSFJC and a western medicine (WM) group (n = 7) treated by Sulfasalazine tablets. The treatment duration lasted eight weeks. Before and after the treatment, the symptoms and the physical signs were observed, and the routine stool test, the colonoscopy, and pathological examination were performed in the two groups. The expression levels of NF-κB p65 and STAT6 were detected by using immunohistochemistry. The results showed that the total effective rate of the curative effectiveness in TCM and WM groups was 100% and 71.4%, respectively, and the total effective rate of colonic mucosa lesion in TCM and WM groups was 90.9% and 71.4%, respectively, with the differences being significant (all P<0.05). The total effective rate of syndromes of damp-heat blocking according to the TCM in TCM and WM groups was 90.9% and 71.4%, respectively. After the treatment, the expression of NF-κB p65 and STAT6 in the two groups was decreased, and the decrease of NF-κB p65 and STAT6 expression in TCM group was more significant than in WM group (P<0.05). It was concluded that CSFJC can inhibit the activation and expression of NF-κB p65 and STAT6 in the intestinal mucosa of patients with ulcerative colitis, which is a possible mechanism for CSFJC treating ulcerative colitis.
    No preview · Article · Dec 2009 · Frontiers of Medicine in China
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of Wumeiwan (WMW) on TNF-α, IL-6, IL-8, IL-10 and NF-κBp65 in rats with ulcerative colitis (UC) were investigated, the curative effectiveness of WMW vs salicylazosulfapyridine (SASP) was compared, and the action mechanism was analyzed. Fifty-Six Sprague-Dawley (SD) rats were randomly divided into four groups (n=14 in each group, with equal ratio of male and female): normal control group, model group, SASP group, and WMW group. Except normal control group, the rat UC models in the remaining three groups were established using the method of 2.4-dinitrochlorobenzene (DNCB) immunization and acetic acid local enema. The rats in model group, SASP group, and WMW group were treated with distilled water, SASP, and WMW respectively. The changes in the symptoms and signs were observed, and levels of IL-6, IL-8, TNF-α, IL-10 and the expression of NF-κBp65 in the colonic tissues were statistically analyzed. The results showed that the levels of IL-6, IL-8, and TNF-α were significantly increased (P<0.01), while those of IL-10 significantly reduced (P<0.01) after establishment of rat UC models as compared with normal control group. The levels of IL-6, IL-8, and TNF-α were obviously lower, but the level of IL-10 was obviously higher in WMW and SASP groups than those in model group (P<0.05). The levels of IL-6, IL-8, and TNF-α were lower, while the level of IL-10 was higher in WMW group than in SASP group. NF-κBp65 was expressed negatively or weakly in normal colonic tissues. The positive expression rate of NF-κBp65 in WMW group and SASP group was obviously lower than in model group (P<0.01), and there was significant difference between WMW group and SASP group (P<0.05). It was concluded that rat UC model was established successfully. WMW could up-regulate the expression of IL-10, down-regulate the expression of TNF-α, IL-6, IL-8, and inhibit the NF-κBp65 activity to adjust immune function, indicating WMW had better curative effects on UC in rats.
    No preview · Article · Oct 2009 · Journal of Huazhong University of Science and Technology