Kaori Terasaki

University of Texas Medical Branch at Galveston, Galveston, Texas, United States

Are you Kaori Terasaki?

Claim your profile

Publications (12)45.72 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Rift Valley fever virus (RVFV), genus Phlebovirus family Bunyaviridae, is an arthropod-borne virus endemic throughout sub-Saharan Africa. Recent outbreaks have resulted in cyclic epidemics with an increasing geographic footprint, devastating both livestock and human populations. Despite being recognized as an emerging threat, relatively little is known about the virulence mechanisms and host interactions of RVFV. To date there are no FDA approved therapeutics or vaccines for RVF and there is an urgent need for their development. The Ser/Thr protein phosphatase 1 (PP1) has previously been shown to play a significant role in the replication of several viruses. Here we demonstrate for the first time that PP1 plays a prominent role in RVFV replication early on during the viral life cycle. Both siRNA knockdown of PP1α and a novel PP1-targeting small molecule compound 1E7-03, resulted in decreased viral titers across several cell lines. Deregulation of PP1 was found to inhibit viral RNA production, potentially through the disruption of viral RNA transcript/protein interactions, and indicates a potential link between PP1α and the viral L polymerase and nucleoprotein. These results indicate that PP1 activity is important for RVFV replication early on during the viral life cycle and may prove an attractive therapeutic target.
    No preview · Article · Jan 2016 · Antiviral research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Importance: Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human CoV that emerged in Saudi Arabia in 2012. MERS-CoV has a zoonotic origin and poses a major threat to public health. However, little is known about the viral factors contributing to the high virulence of MERS-CoV. Many animal viruses, including CoVs, encode proteins that interfere with host gene expression, including those involved in antiviral immune responses, and these viral proteins are often major virulence factors. The nonstructural protein 1 (nsp1) of CoVs is one such protein that inhibits host gene expression and is a major virulence factor. This study presents evidence for a strategy employed by MERS-CoV nsp1 to inhibit host gene expression that has not been described previously for any viral protein. The present study represents a meaningful step towards a better understanding of the factors and molecular mechanisms governing the virulence and pathogenesis of MERS-CoV.
    No preview · Article · Aug 2015 · Journal of Virology
  • Kaori Terasaki · Breanna R Tercero · Shinji Makino
    [Show abstract] [Hide abstract]
    ABSTRACT: Rift Valley fever virus (RVFV) is an arbovirus circulating between ruminants and mosquitoes to maintain its enzootic cycle. Humans are infected with RVFV through mosquito bites or direct contact with materials of infected animals. The virus causes Rift Valley fever, which was first recognized in the Great Rift Valley of Kenya in 1931. RVFV is characterized by a febrile illness resulting in a high rate of abortions in ruminants and an acute febrile illness, followed by fatal hemorrhagic fever and encephalitis in humans. Initially, the virus was restricted to the eastern region of Africa, but the disease has now spread to southern and western Africa, as well as outside of the African continent, e.g., Madagascar, Saudi Arabia and Yemen. There is a serious concern that the virus may spread to other areas, such as North America and Europe. As vaccination is an effective tool to control RVFV epidemics, formalin-inactivated vaccines and live-attenuated RVFV vaccines have been used in endemic areas. The formalin-inactivated vaccines require boosters for effective protection, whereas the live-attenuated vaccines enable the induction of protective immunity by a single vaccination. However, the use of live-attenuated RVFV vaccines for large human populations having a varied health status is of concern, because of these vaccines' residual neuro-invasiveness and neurovirulence. Recently, novel vaccine candidates have been developed using replication-defective RVFV that can undergo only a single round of replication in infected cells. The single-cycle replicable RVFV does not cause systemic infection in immunized hosts, but enables the conferring of protective immunity. This review summarizes the properties of various RVFV vaccines and recent progress on the development of the single-cycle replicable RVFV vaccines. Copyright © 2015. Published by Elsevier B.V.
    No preview · Article · May 2015 · Virus Research
  • Kaori Terasaki · Shinji Makino
    [Show abstract] [Hide abstract]
    ABSTRACT: Rift Valley fever virus (RVFV) belongs to the genus Phlebovirus, family Bunyaviridae, and carries single-stranded tripartite RNA segments. The virus is transmitted by mosquitoes and has caused large outbreaks among ruminants and humans in sub-Saharan African and Middle East countries. The disease is characterized by a sudden onset of fever, headache, muscle pain, joint pain, photophobia, and weakness. In most cases, patients recover from the disease after a period of weeks, but some also develop retinal or macular changes, which result in vision impairment that lasts for an undefined period of time, and severe disease, characterized by hemorrhagic fever or encephalitis. The virus also causes febrile illness resulting in a high rate of spontaneous abortions in ruminants. The handling of wild-type RVFV requires high-containment facilities, including biosafety level 4 or enhanced biosafety level 3 laboratories. Nonetheless, studies clarifying the mechanisms of the RVFV-induced diseases and preventing them are areas of active research throughout the world. By primarily referring to recent studies using several animal model systems, protein expression systems, and specific mutant viruses, this review describes the current knowledge about the mechanisms of pathogenesis of RVF and biological functions of various viral proteins that affect RVFV pathogenicity. © 2015 S. Karger AG, Basel.
    No preview · Article · Feb 2015 · Journal of Innate Immunity
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is an arbovirus that causes severe disease in humans and livestock in sub-Saharan African countries. Although the MP-12 strain of RVFV is a live attenuated vaccine candidate, neuroinvasiveness and neurovirulence of MP-12 in mice may be a concern when vaccinating certain individuals, especially those that are immunocompromised. We have developed a novel, single-cycle replicable MP-12 (scMP-12), which carries an L RNA, M RNA mutant encoding a mutant envelope protein lacking an endoplasmic reticulum retrieval signal and defective for membrane fusion function, and S RNA encoding N protein and green fluorescent protein. The scMP-12 underwent efficient amplification, then formed plaques and retained the introduced mutation after serial passages in a cell line stably expressing viral envelope proteins. However, inoculation of the scMP-12 into naïve cells resulted in a single round of viral replication, and production of low levels of noninfectious virus-like particles. Intracranial inoculation of scMP-12 into suckling mice did not cause clinical signs or death, a finding which demonstrated that the scMP-12 lacked neurovirulence. Mice immunized with a single dose of scMP-12 produced neutralizing antibodies, whose titers were higher than in mice immunized with replicon particles carrying L RNA and S RNA encoding N protein and green fluorescent protein. Moreover, 90% of the scMP-12-immunized mice were protected from wild-type RVFV challenge by efficiently suppressing viremia and replication of the challenge virus in the liver and the spleen. These data demonstrated that scMP-12 is a safe and immunogenic RVFV vaccine candidate.
    Preview · Article · Mar 2014 · PLoS Neglected Tropical Diseases
  • Source
    Kaori Terasaki · Sungyong Won · Shinji Makino
    [Show abstract] [Hide abstract]
    ABSTRACT: The NSm nonstructural protein of Rift Valley fever virus (family Bunyaviridae, genus Phlebovirus) has an antiapoptotic function and affects viral pathogenesis. We found that NSm integrates into the mitochondrial outer membrane and that the protein's N terminus is exposed to the cytoplasm. The C-terminal region of NSm, which contains a basic amino acid cluster and a putative transmembrane domain, targeted the protein to the mitochondrial outer membrane and exerted antiapoptotic function.
    Preview · Article · Oct 2012 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We characterized the RNA elements involved in the packaging of Rift Valley fever virus RNA genome segments, L, M, and S. The 5′-terminal 25 nucleotides of each RNA segment were equally competent for RNA packaging and carried an RNA packaging signal, which overlapped with the RNA replication signal. Only the deletion mutants of L RNA, but not full-length L RNA, were efficiently packaged, implying the possible requirement of RNA compaction for L RNA packaging.
    Preview · Article · Jan 2012 · Journal of Virology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Bunyaviridae family includes pathogens of medical and veterinary importance. Rift Valley fever virus (RVFV), a member in the Phlebovirus genus of the family Bunyaviridae, is endemic to sub-Saharan Africa and causes a mosquito-borne disease in ruminants and humans. Viruses in the family Bunyaviridae carry a tripartite, single-stranded, negative-sense RNA genome composed of L, M, and S RNAs. Little is known about how the three genomic RNA segments are copackaged to generate infectious bunyaviruses. We explored the mechanism that governs the copackaging of the three genomic RNAs into RVFV particles. The expression of viral structural proteins along with replicating S and M RNAs resulted in the copackaging of both RNAs into RVFV-like particles, while replacing M RNA with M1 RNA, lacking a part of the M RNA 5' UTR, abrogated the RNA copackaging. L RNA was efficiently packaged into virus particles released from cells supporting the replication of L, M, and S RNAs, and replacing M RNA with M1 RNA abolished the packaging of L RNA. Detailed analyses using various combinations of replicating viral RNAs suggest that M RNA alone or a coordinated function of M and S RNAs exerted efficient L RNA packaging either directly or indirectly. Collectively, these data are consistent with the possibility that specific intermolecular interactions among the three viral RNAs drive the copackaging of these RNAs to produce infectious RVFV.
    Preview · Article · Jan 2011 · Proceedings of the National Academy of Sciences
  • Source
    Dataset: Figure S1
    [Show abstract] [Hide abstract]
    ABSTRACT: Growth curve of rZH501-847-A and rZH501-847-A in MRC-5 cells. MRC-5 cells were inoculated with rZH501-847-A or rZH501-847-A at an moi of 0.02. Culture fluids were collected and virus titers were determined by a plaque assay that used VeroE6 cells. The results were obtained from three independent experiments. (0.07 MB TIF)
    Preview · Dataset · Apr 2010
  • Source
    Dataset: Figure S2
    [Show abstract] [Hide abstract]
    ABSTRACT: Histopathology and IHC of mice infected with rZH501-M847-A (A to D), and rZH501-M847-G (E to H). (A) Brain of mouse infected with rZH501-M847-A on day 6 p.i. Viral antigens were detected by IHC in the neurons (magnification, ×200, inset: ×400). (B) Glomerulus of the kidney in mouse infected with rZH501-M847-A; some mice showed pyknotic cells (arrow) in glomeruli (magnification, ×600). (C, D) RVFV antigens were detected by IHC in the glomeruli (C) and blood smooth muscle of interlobular and arcuate arteries (D) of mice infected with rZH501-M847-A (magnification, ×600). (E) Mice infected with rZH501-M847-G had encephalitis on day 8 p.i. Viral antigens were detected in the neurons by IHC (magnification, ×200, inset: ×400). (F) No lesions were found in the kidneys of mice infected with rZH501-M847-G (magnification, ×600). (G, H) Viral antigens were detected in the smooth muscles of interlobular and arcuate arteries (H); however antigens were not detected in the glomeruli of mice infected with rZH501-M847-G (G) (magnification, ×600). (2.55 MB TIF)
    Preview · Dataset · Apr 2010
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rift Valley fever virus (RVFV), a member of the genus Phlebovirus within the family Bunyaviridae, is a negative-stranded RNA virus with a tripartite genome. RVFV is transmitted by mosquitoes and causes fever and severe hemorrhagic illness among humans, while in livestock it causes fever and high abortion rates. Sequence analysis showed that a wild-type RVFV ZH501 preparation consisted of two major viral subpopulations, with a single nucleotide heterogeneity at nucleotide 847 of M segment (M847); one had a G residue at M847 encoding glycine in a major viral envelope Gn protein, while the other carried A residue encoding glutamic acid at the corresponding site. Two ZH501-derived viruses, rZH501-M847-G and rZH501-M847-A, carried identical genomic sequences, except that the former and the latter had G and A, respectively, at M847 were recovered by using a reverse genetics system. Intraperitoneal inoculation of rZH501-M847-A into mice caused a rapid and efficient viral accumulation in the sera, livers, spleens, kidneys and brains, and killed most of the mice within 8 days, whereas rZH501-M847-G caused low viremia titers, did not replicate as efficiently as did rZH501-M847-A in these organs, and had attenuated virulence to mice. Remarkably, as early as 2 days postinfection with rZH501-M847-G, the viruses carrying A at M847 emerged and became the major virus population thereafter, while replicating viruses retained the input A residue at M847 in rZH501-M847-A-infected mice. These data demonstrated that the single nucleotide substitution in the Gn protein substantially affected the RVFV mouse virulence and that a virus population carrying the virulent viral genotype quickly emerged and became the major viral population within a few days in mice that were inoculated with the attenuated virus.
    Full-text · Article · Apr 2010 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) causes mosquito-borne epidemic diseases in humans and livestock. The virus carries three RNA segments, L, M, and S, of negative or ambisense polarity. L protein, an RNA-dependent RNA polymerase, encoded in the L segment, and N protein, encoded in the S segment, exert viral RNA replication and transcription. Coexpression of N, hemagglutinin (HA)-tagged L, and viral minigenome resulted in minigenome replication and transcription, a finding that demonstrated HA-tagged L was biologically active. Likewise L tagged with green fluorescent protein (GFP) was biologically competent. Coimmunoprecipitation analysis using extracts from cells coexpressing HA-tagged L and GFP-tagged L showed the formation of an L oligomer. Bimolecular fluorescence complementation analysis and coimmunoprecipitation studies demonstrated the formation of an intermolecular L-L interaction through its N-terminal and C-terminal regions and also suggested an intramolecular association between the N-terminal and C-terminal regions of L protein. A biologically inactive L mutant, in which the conserved signature SDD motif was replaced by the amino acid residues GNN, exhibited a dominant negative phenotype when coexpressed with wild-type L in the minigenome assay system. Expression of this mutant L also inhibited viral gene expression in virus-infected cells. These data provided compelling evidence for the importance of oligomerization of RVFV L protein for its polymerase activity.
    Full-text · Article · Oct 2009 · Journal of Virology