Yanmei Zhao

Logistical College of Chinese People's Armed Police Force, T’ien-ching-shih, Tianjin Shi, China

Are you Yanmei Zhao?

Claim your profile

Publications (1)8.56 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: We aimed to develop a hybrid scaffold with a porous structure and similar composition as natural bone for the controlled release of bone morphogenetic protein-2 (BMP-2) to enhance bone regeneration. We fabricated a gelatin/nanohydroxypatite (nHAP) scaffold by glutaraldehyde chemical cross-linking a gelatin aqueous solution with nHAP granules at a 5:1 ratio (v/w). Then, fibrin glue (FG) mixed with recombinant human BMP-2 (rhBMP-2) was infused into the gelatin/nHAP scaffold and lyophilized to develop an rhBMP-2-loaded gelatin/nHAP/FG scaffold. On scanning electron microscopy, the composite had a 3-D porous structure. The rhBMP-2 release kinetics from the hybrid scaffold was sustained and slow, and release of rhBMP-2 was complete at 40 days. Immunohistochemistry, azo-coupling and alizarin S-red staining were used to study in vitro differentiation of human bone-marrow mesenchymal cells (hBMSCs). Strong positive staining results confirmed that rhBMP-2 released from the scaffold could improve osteocalcin (OCN) and alkaline phosphatase (ALP) expression and calcium deposition formation. RT-PCR results showed significantly high mRNA expression of ALP and OCN in hBM-MSCs cultured on the gelatin/nHAP/FG scaffold with rhBMP-2. DNA assay demonstrated that the scaffold was noncytotoxic and could promote hBMSC proliferation from the components of the hybrid scaffold, not released rhBMP-2. The hybrid scaffolds were then used to repair critical-size segmental bone defects of rabbit radius. Gross specimen, X-ray, bone histomorphology and bone mineral density assay demonstrated that the rhBMP-2-loaded gelatin/nHAP/FG scaffold had good osteogenic capability and could repair the segmental bone defect completely in 12 weeks.
    No preview · Article · Sep 2009 · Biomaterials

Publication Stats

42 Citations
8.56 Total Impact Points

Top Journals


  • 2009
    • Logistical College of Chinese People's Armed Police Force
      T’ien-ching-shih, Tianjin Shi, China