Publications (2)8.62 Total impact

  • [Show abstract] [Hide abstract] ABSTRACT: Intermedin (IMD), a member of calcitonin family, was suggested to play a role in angiogenesis and cancer. The aim of this study was to investigate the role of IMD in the angiogenic process and the underlying mechanism, and the possibility for it to be used as a target for angiogenesis-based anticancer therapies. Using in vivo and in vitro 3-dimensional angiogenic models, we found that IMD induced a well-ordered vasculature with hierarchical structure and had a synergistic effect with vascular endothelial growth factor. Using RNA interference, real-time polymerase chain reaction, and Western blot analysis, we found that IMD alleviated the undesirable effects of vascular endothelial growth factor by restricting the excessive vessel sprouting and uneven lumen formation through the regulation of vascular endothelial-cadherin and identified its receptor on the endothelial cells. Both mitogen-activated protein kinase/extracellular signal-regulated kinase and phosphoinositide 3-kinase/Akt activation were involved in the effects. Furthermore, using experimental tumor models, we demonstrated that IMD was involved in tumor angiogenesis, and the blockade of IMD severely impaired blood supply and eventually inhibited tumor growth. We demonstrated that IMD played a critical role in the vascular remodeling process and tumor angiogenesis and may serve as a novel target for the development of angiogenesis-based anticancer therapies.
    No preview · Article · Aug 2012 · Arteriosclerosis Thrombosis and Vascular Biology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Peptide aptamers are molecules which can specifically bind to a given target protein and have the potential to selectively block the function of the target protein. It has been reported that a peptide aptamer (C1-1) identified from a randomized expression library specifically bound to the core protein of hepatitis B virus and inhibited viral capsid formation and DNA replication in vitro. Adenoviral systems are popular platforms for reliable gene delivery and high-level transient expression in any mammalian cell type in vitro, and have a natural tropism for the liver after systemic administration. In the present study, we explored the feasibility of gene therapy against HBV infection with adenoviral system, and found that systematic administration of recombinant adenovirus encoding the peptide aptamer (C1-1) significantly inhibited viral capsid formation, HBV DNA replication and virion production in vivo. These results suggest an efficient antiviral treatment against HBV infection by delivery of anti-HBV peptide aptamer with recombinant adenovirus.
    Full-text · Article · Aug 2009 · Peptides