Paolo Orsini

Università di Pisa, Pisa, Tuscany, Italy

Are you Paolo Orsini?

Claim your profile

Publications (19)36.83 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Blink rate (BR), which is considered an index of the dopaminergic tone, has been studied in 41 subjects with high (highs), medium (mediums) and low (lows) hypnotisability scores in resting conditions. It has been found higher in highs; relaxation (indicated by skin conductance), anxiety and the proneness to absorption in tasks (assessed by questionnaires) were not responsible for the observed difference. In contrast, the BR difference did not survive controlling for mind wandering (MW questionnaire) whose variability could account for contrasting earlier reports, although no significant hypnotisability-related difference has been observed in MW scores. Findings do not allow to exclude that mechanisms other than dopaminergic ones may be involved in the observed difference in BR. In particular, we suggest that one of the mechanisms possibly sustaining the highs' higher BR may be a reduced cerebellar inhibition. In fact, cerebellar impairment is associated with higher BR and several studies of sensorimotor integration indicate different cerebellar controls in the highs' and lows' behavior.
    Full-text · Article · Aug 2014 · Experimental Brain Research

  • No preview · Article · Jun 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Direct Laser Writing (DLW) is an innovative tool that allows the photo-fabrication of high resolution 3D structures, that can be successfully exploited for the study of the physical interactions between cells and substrates. In this work, we focused our attention on the topographical effects of sub-micrometric patterned surfaces fabricated via DLW on neuronal cell behavior. In particular, we designed, prepared, and characterized substrates based on aligned ridges for the promotion of axonal outgrowth and guidance. We demonstrated that both rat PC12 neuron-like cells and human SH-SY5Y derived neurons differentiate on parallel 2.5 µm spaced sub-micrometric ridges, being characterized by strongly aligned and significantly longer neurites with respect to those differentiated on flat control substrates, or on more spaced (5 and 10 µm) ridges. Furthermore, we detected an increased molecular differentiation toward neurons of the SH-SY5Y cells when grown on the sub-micrometric patterned. Finally, we observed that the axons can exert forces able of bending the ridges, and we indirectly estimated the order of magnitude of these forces thanks to scanning probe techniques. Collectively, we showed as sub-micrometric structures fabricated by DLW can be used as a useful tool for the study of the axon mechanobiology.
    Full-text · Article · Dec 2013 · ACS Applied Materials & Interfaces
  • Source
    C Grasso · P Orsini · L Bruschini · D Manzoni · M Barresi
    [Show abstract] [Hide abstract]
    ABSTRACT: Vestibulospinal reflexes can be elicited in humans by low amplitudes direct (galvanic) currents lasting tens of milliseconds and applied across the two mastoids bones, which can be delivered by particular stimulators. The stimulus induces a perception of body sway and a postural response appropriate to counteract the perceived sway. Both the direction of the perceived and induced body sway are modulated by the orientation of the head with respect to the body. This phenomenon is due to the fact that integration of vestibular and neck signals allows to correctly infer the direction of body sway from the labyrinthine input, which is instead related to direction of head motion. The modulation of stimulus-elicited body sway by neck rotation could be utilised for testing the effectiveness of neck proprioceptive signals in modifying the reference frame for labyrinthine signals from the head to the body. In the present experiments we showed that labyrinthine stimulation can be performed also by using train of pulses of 1 msec duration, which can be delivered by virtually all stimulators allowed for human use. Moreover, we developed a simple technique for visualising the time course of the changes in the direction of the postural response, based on the evaluation of the velocity vector of subject's centre of pressure. This method could be exploited in order to the test the efficacy of neck proprioceptive information in modifying the reference frame for processing vestibular signals in both physiological and pathological condition.
    Full-text · Article · Jun 2013 · Archives italiennes de biologie
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scanning ion conductance microscopy (SICM) is a type of scanning probe microscopy based on the continuous measurement of an ion current flowing through a pipette filled with an electrolyte solution, while the pipette apex approaches a non-conductive sample. This technique can be operated in environmental conditions such as those of cell cultures and does not require a direct contact between probe and sample. It is therefore particularly suitable for the investigation of living specimens. SICM was initially proposed as an instrument that could obtain topographic 3D images with high resolution. Later, simple modifications have been devised to apply a mechanical stimulus to the specimen via a solution flux coming out from the pipette aperture. This modified setup has been employed to measure cell membrane elasticity and to guide the growth cones of neurons for tens of micrometers, by means of repeated non-contact scanning. Both these applications require an accurate measurement of the mechanical forces acting on the cell surface, which can be obtained by combining SICM, Atomic force microscopy (AFM) and inverted optical microscopy in the same apparatus. In this configuration, a SICM pipette is approached to an AFM cantilever while monitoring the cantilever deflection as a function of the pressure applied to the pipette and the relative distance. In addition, the pipette aperture can be imaged in situ by exploiting the AFM operation, so that all the experimental parameters can be effectively controlled in the investigation of pressure effects on living cells.
    No preview · Conference Paper · May 2013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Knowledge of mechanical properties of living cells is essential to understand their physiological and pathological conditions. To measure local cellular elasticity, scanning probe techniques have been increasingly employed. In particular, non-contact scanning ion conductance microscopy (SICM) has been used for this purpose; thanks to the application of a hydrostatic pressure via the SICM pipette. However, the measurement of sample deformations induced by weak pressures at a short distance has not yet been carried out. A direct quantification of the applied pressure has not been also achieved up to now. These two issues are highly relevant, especially when one addresses the investigation of thin cell regions. In this paper, we present an approach to solve these problems based on the use of a setup integrating SICM, atomic force microscopy, and optical microscopy. In particular, we describe how we can directly image the pipette aperture in situ. Additionally, we can measure the force induced by a constant hydrostatic pressure applied via the pipette over the entire probe-sample distance range from a remote point to contact. Then, we demonstrate that the sample deformation induced by an external pressure applied to the pipette can be indirectly and reliably evaluated from the analysis of the current-displacement curves. This method allows us to measure the linear relationship between indentation and applied pressure on uniformly deformable elastomers of known Young's modulus. Finally, we apply the method to murine fibroblasts and we show that it is sensitive to local and temporally induced variations of the cell surface elasticity.
    No preview · Article · Jun 2012 · Pflügers Archiv - European Journal of Physiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scanning ion conductance microscopy (SICM) is a scanning probe microscopy particularly suitable for the investigation of living biological specimens due to its low invasivity. Recently, this technique has been used not only to perform 3D-imaging, but also to stimulate and guide neuronal growth cones. In particular, it has been demonstrated that one can guide the cone growth for tens of micrometres by means of recurrent and non-contact SICM scanning along a defined line, with a pipette having an internal hydrostatic pressure. Accurate measurements of the mechanical forces acting on the cell membrane in these stimulation protocols are essential to explain the biological mechanisms involved. Herein a setup specifically developed for this purpose, combining together SICM, atomic force microscopy (AFM) and inverted optical microscopy is described. In this configuration, a SICM pipette can be approached to an AFM cantilever while monitoring the cantilever deflection as a function of the hydrostatic pressure applied to the pipette and the relative distance. In this way, one can directly measure mechanical forces down to 20 pN. The same apparatus is thus sufficient to calibrate a given pipette and immediately use it to study the hydrostatic pressure effects on living cells.
    No preview · Article · Apr 2012 · Micro & Nano Letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: We discuss on the feasibility of mapping the elastic properties of cellular regions with small thickness by means of a Scanning Ion Conductance Microscope employed to deliver mechanical stimuli in noncontact mode. I. INTRODUCTION In Scanning Ion Conductance Microscopy (SICM), a pipette is used as a probe to study the 3D morphology of cultured living cells. An ion current is let to flow through the pipette tip and the distance between probe and sample can be controlled by means of a feedback on the current signal. Upon properly choosing the working distance, topographic images of a living cell can be obtained with high resolution and without perturbing it.
    No preview · Article · Jun 2011

  • No preview · Article · Jun 2011 · Clinical Neurophysiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Changing the foot position modifies the mechanical action exerted by the ankle extensor and flexor muscles over the body. We verified, in two groups of healthy subjects standing with the heels touching or apart, whether a 90° external rotation of the right leg and foot also changes the pattern of vestibulospinal reflexes elicited by electrical stimulation of the labyrinth. With the head oriented forward, leg rotation did not modify the labyrinthine-driven displacements of the center of pressure (CoP). When the head was rotated in the horizontal plane, either to the right or to the left, the CoP displacement increased along the y axis in all subjects. Changes in the x component in most instances appropriate to preserve unmodified the direction of body sway elicited by the stimulus were observed. Right leg rotation increased the basal EMG activity of ankle extensors and flexors on the left side, while the right side activity was unaffected. The EMG responses to labyrinthine stimulation were modified only on the left side, in a way appropriate to correct the effects of the altered torque pattern exerted on the body by right leg muscles. It appears, therefore, that somatosensory signals related to leg rotation and/or copy of the corresponding voluntary motor commands modify the pattern of vestibulospinal reflexes and maintain the postural response appropriate to counteract a body sway in the direction inferred by labyrinthine signals.
    Full-text · Article · Apr 2011 · Human movement science
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scanning ion conductance microscopy (SICM) is currently used for high resolution topographic imaging of living cells. Recently, it has been also employed as a tool to deliver stimuli to the cells. In this work we have investigated the mechanical interaction occurring between the pipette tip and the sample during SICM operation. For the purpose, we have built a setup combining SICM with atomic force microscopy (AFM), where the AFM cantilever replaces the sample. Our data indicate that, operating in far-scanning mode with current decrease values below 2%, no force can be detected, provided that the level of the electrolyte filling the pipette is equal to that determined by the capillary tension. A filling level different from this value determines a hydrostatic pressure, a flux through the pipette tip and detectable forces, even in far-scanning mode. The absolute value of these forces depends on the pipette tip size. Therefore, a possible pitfall when using SICM for cell imaging is to imply zero-force working conditions. However the hydrostatic forces can be exploited in order to deliver weak mechanical stimuli and guide neuronal growth cones. Evidences of the effectiveness of this approach are herein given.
    No preview · Article · Mar 2011 · Neuroscience Research
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies showed that highly hypnotizable persons imagining a specific sensory context behave according to the corresponding real stimulation and perceive their behaviour as involuntary. The aim of the study was to confirm the hypothesis of a translation of sensory imagery into real perception and, thus, of a true involuntary response. We studied the imagery-induced modulation of the vestibulospinal (VS) reflex earlier component in highly (Highs) and low hypnotizable subjects (Lows), as it is not affected by voluntary control, its amplitude depends on the stimulus intensity, and the plane of body sway depends on the position of the head with respect to the trunk. Results showed that the effects of the "obstructive" imagery of anaesthesia are different from those elicited by the "constructive" imagery of head rotation. Indeed, both Highs and Lows having their face forward and reporting high vividness of imagery experienced anaesthesia and reduced their VS reflex amplitude in the frontal plane, while only Highs changed the plane of body sway according to the imagined head rotation that is from the frontal to the sagittal one. These effects cannot be voluntary and should be attributed to translation of sensory imagery into the corresponding real perception.
    No preview · Article · Oct 2010 · Experimental Brain Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Visuo-spatial disturbances could represent a clinical feature of early stage Alzheimer's disease (AD). The magnocellular (M) pathway has anatomo-physiological characteristic which make it more suitable for detecting form, motion and depth compared with parvocellular one (P). Aim of our study was to evaluate specific visual subsystem involvement in a group of AD patients, recording isoluminant chromatic and luminance pattern electroretinograms and pattern visual evoked potentials. data were obtained from 15 AD patients (9 females and 6 males, mean age+/-1SD: 77.6+/-4.01 years) not yet undergoing any treatment, and from 10 age-matched healthy controls. Diagnosis of probable AD was clinically and neuroradiologically established. PERGs were recorded monocularly in response to equiluminant red-green (R-G), blue-yellow (B-Y) and luminance yellow-black (Y-Bk) horizontal square gratings of 0.3c/deg and 90% contrast, reversed at 1Hz. VEPs were recorded in response to full-field (14 deg) equiluminant chromatic R-G, B-Y and luminance Y-Bk sinusoidal gratings of 2c/deg, presented in onset (300ms)-offset (700ms) mode, at the contrast levels of 90%. All data were retrieved in terms of peak-amplitude and latency and assessed using the Student's t-test for paired data. Temporal differences of PERGs and VEPs, evoked by Y-Bk grating in AD patients compared with controls, suggest a specific impairment of the magnocellular stream. Our study support the hypothesis that the impairment of the PERGs and VEPs arising from the magnocellular streams of visual processing may indicate a primary dysfunction of the M-pathways in AD.
    Full-text · Article · Apr 2010 · Brain research bulletin

  • No preview · Article · Oct 2009
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scanning ion conductance microscopy has been applied to neuronal growth cones of the leech either to image or to stimulate them. Growth cone advance was recorded in non-contact mode using a 2% ion current decrease criterion for pipette-membrane distance control. We demonstrate effective growth cone remodelling using a 5% criterion (near-scanning). Recurrent line near-scanning aligned growth cone processes along the scan line. The new membrane protrusions, marked by DiI, started a few minutes after scanning onset and progressively grew in thickness. Using scanning patterns suitable for connecting distinct growth cones, new links were consistently developed. Although the underlying mechanism is still a matter for investigation, a mechanical perturbation produced by the moving probe appeared to induce the process formation. Thanks to its deterministic and interactive features, this novel approach to guiding growth cones is a promising way to develop networks of identified neurons as well as link them with artificial structures.
    No preview · Article · Aug 2009 · Neuroscience Research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The signal structure of the responses to equiluminant chromatic and achromatic (contrast) stimuli was studied in normal volunteers and patients with mild to moderate idiopathic Parkinson's disease. Visual stimuli were full-field (14 x 16 deg) achromatic or equiluminant (red-green or blue-yellow) sinusoidal gratings at 2c/deg and 90% contrast presented in onset-offset mode. The signal was processed offline by DFT and factor analysis was performed in the frequency domain. The conventional VEPs to chromatic onset stimuli showed a monophasic negative wave, while the response to offset stimuli was comparable in shape to the on-/offset achromatic responses; latencies were longer and amplitudes higher than those of responses to contrast stimulation. In patients, latencies were longer than in controls after achromatic and (to a lesser extent) red-green stimulations, but not after blue-yellow stimulation; amplitudes were comparable in all stimulus conditions. In healthy subjects, two non-overlapping factors accounted for the approximately 2-30.0 Hz and approximately 25.0-50.0 Hz signal components (representative of the low-frequency VEP and gamma oscillatory responses, respectively); the frequency of the approximately 25.0-50.0 Hz factor was lower after color than after contrast stimulation. The same factor structure was identified in patients, but the peak frequency of the factor on gamma activity was higher than in controls and did not vary with color-opponent stimulation. These observations indicate that stimulus-related gamma activity originates in cortex irrespective of the activated (magno-, parvo-, or konio-cellular) visual pathway, consistent with the suggested role in the phase coding of neuronal activities. Some dopaminergic modulation of gamma activity is conceivable.
    Full-text · Article · Mar 2009 · Vision research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The signal structure of the responses to equiluminant chromatic and achromatic (contrast) stimuli was studied in normal volunteers and patients with mild to moderate idiopathic Parkinson's disease. Visual stimuli were full-field (14 x 16 deg) achromatic or equiluminant (red-green or blue-yellow) sinusoidal gratings at 2c/deg and 90% contrast presented in onset-offset mode. The signal was processed offline by DFT and factor analysis was performed in the frequency domain. The conventional VEPs to chromatic onset stimuli showed a monophasic negative wave, while the response to offset stimuli was comparable in shape to the on-/offset achromatic responses; latencies were longer and amplitudes higher than those of responses to contrast stimulation. In patients, latencies were longer than in controls after achromatic and (to a lesser extent) red-green stimulations, but not after blue-yellow stimulation; amplitudes were comparable in all stimulus conditions. In healthy subjects, two non-overlapping factors accounted for the approximately 2-30.0 Hz and approximately 25.0-50.0 Hz signal components (representative of the low-frequency VEP and gamma oscillatory responses, respectively); the frequency of the approximately 25.0-50.0 Hz factor was lower after color than after contrast stimulation. The same factor structure was identified in patients, but the peak frequency of the factor on gamma activity was higher than in controls and did not vary with color-opponent stimulation. These observations indicate that stimulus-related gamma activity originates in cortex irrespective of the activated (magno-, parvo-, or konio-cellular) visual pathway, consistent with the suggested role in the phase coding of neuronal activities. Some dopaminergic modulation of gamma activity is conceivable.
    Full-text · Article · Feb 2009 · Vision Research

  • No preview · Article · Sep 2008 · Clinical Neurophysiology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies on the role of hypnotizability in postural control indicate that the body sway of subjects with high or low hypnotizability to hypnosis is differentially modulated by eye closure. The aim of this study was to investigate whether hypnotizability also modulates the postural response to electrical vestibular stimulation and to head rotation in nonhypnotized individuals. The center of pressure (CoP) displacements were monitored in highs and lows standing on a stabilometric platform with closed eyes during basal conditions and electrical vestibular stimulation in 3 different positions of the head. Results showed that the CoP stimulus-locked displacements as well as the CoP mean position, area, and mean velocity were similar in highs and lows, but only in lows did the head position modulate the mean velocity. This finding might reflect a difference in sensory-motor integration between the 2 groups.
    No preview · Article · May 2008 · International Journal of Clinical and Experimental Hypnosis