Dominik Schilling

Universität Ulm, Ulm, Baden-Württemberg, Germany

Are you Dominik Schilling?

Claim your profile

Publications (2)4.48 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Small non-coding RNAs (sRNAs) are key players in prokaryotic metabolic circuits, allowing the cell to adapt to changing environmental conditions. Regulatory interference by sRNAs in cellular metabolism is often facilitated by the Sm-like protein Hfq. A search for novel sRNAs in A. baylyi intergenic regions was performed by a biocomputational screening. One candidate, Aar, encoded between trpS and sucD showed Hfq dependency in Northern blot analysis. Aar was expressed strongly during stationary growth phase in minimal medium; in contrast, in complex medium, strongest expression was in the exponential growth phase. Whereas over-expression of Aar in trans did not affect bacterial growth, seven mRNA targets predicted by two in silico approaches were upregulated in stationary growth phase. All seven mRNAs are involved in A. baylyi amino acid metabolism. A putative binding site for Lrp, the global regulator of branched-chain amino acids in E. coli, was observed within the aar gene. Both facts imply an Aar participation in amino acid metabolism.
    Preview · Article · Sep 2010 · Archives of Microbiology
  • Source
    Dominik Schilling · Ulrike Gerischer
    [Show abstract] [Hide abstract]
    ABSTRACT: In gammaproteobacteria the Hfq protein shows a great variation in size, especially in its C-terminal part. Extremely large Hfq proteins consisting of almost 200 amino acid residues and more are found within the gammaproteobacterial family Moraxellaceae. The difference in size compared to other Hfq proteins is due to a glycine-rich domain near the C-terminal end of the protein. Acinetobacter baylyi, a nonpathogenic soil bacterium and member of the Moraxellaceae encodes a large 174-amino-acid Hfq homologue containing the unique and repetitive amino acid pattern GGGFGGQ within the glycine-rich domain. Despite the presence of the C-terminal extension, A. baylyi Hfq complemented an Escherichia coli hfq mutant in vivo. By using polyclonal anti-Hfq antibodies, we detected the large A. baylyi Hfq that corresponds to its annotated size indicating the expression and stability of the full protein. Deletion of the complete A. baylyi hfq open reading frame resulted in severe reduction of growth. In addition, a deletion or overexpression of Hfq was accompanied by the loss of cell chain assembly. The glycine-rich domain was not responsible for growth and cell phenotypes. hfq gene localization in A. baylyi is strictly conserved within the mutL-miaA-hfq operon, and we show that hfq expression starts within the preceding miaA gene or further upstream.
    Preview · Article · Jul 2009 · Journal of bacteriology

Publication Stats

13 Citations
4.48 Total Impact Points


  • 2009-2010
    • Universität Ulm
      • Institute of Microbiology and Biotechnology
      Ulm, Baden-Württemberg, Germany