Jacob Jensen

ACADIA Pharmaceutical, San Diego, California, United States

Are you Jacob Jensen?

Claim your profile

Publications (3)11.84 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We discovered structurally novel human calcium-sensing receptor (CaSR) allosteric agonists and compared their pharmacology to phenylalkylamine calcimimetics. 1-Benzothiazol-2-yl-1-(2,4-dimethyl-phenyl)-ethanol (AC-265347) activated CaSR signaling in cellular proliferation and phosphatidylinositol (PI) hydrolysis assays with potencies of 30 and 10 nM, respectively. (S)-1-Benzothiazol-2-yl-1-(2,4-dimethyl-phenyl)-ethanol) [(S)-AC-265347], the S-enantiomer of AC-265347, was approximately 10- to 20-fold more potent than (R)-1-benzothiazol-2-yl-1-(2,4-dimethyl-phenyl)-ethanol) [(R)-AC-265347]. The phenylalkylamines cinacalcet and calindol had activity similar to that of AC-265347 in cellular proliferation assays but less activity in PI assays. All compounds had reduced activity when extracellular Ca(2+) was removed, indicating that they cooperate with Ca(2+) to activate CaSRs, and all activated CaSR isoforms with the N-terminal extracellular domain deleted, indicating that they interact with the transmembrane domains. In both cases, AC-265347 and therefore (S)-AC-265347 were significantly more efficacious than the phenylalkylamines. Mutations E837A(7.39) and I841A(7.43) strongly reduced phenylalkylamine-induced signaling, but not AC-265347- or (S)-AC-265347-induced signaling, suggesting different modes of binding. AC-265347 and (S)-AC-265347 stimulated significantly greater responses than cinacalcet or calindol at each of four loss-of-function human polymorphic CaSR variants. AC-265347 did not inhibit the CYP2D6 cytochrome P450 isozyme, unlike cinacalcet, which is a potent CYP2D6 inhibitor. In rats, AC-265347, (S)-AC-265347, and (R)-AC-265347 each reduced serum parathyroid hormone (PTH) with a rank order potency correlated with their in vitro potencies. AC-265347 and (S)-AC-265347 also reduced plasma ionizable calcium ([Ca(2+)](o)). AC-265347 was orally active, and its plasma concentrations correlated well with its effects on serum PTH. Thus, these highly efficacious CaSR allosteric agonists represent leads for developing therapeutic agents with potential advantages over existing therapies.
    Preview · Article · Mar 2011 · Journal of Pharmacology and Experimental Therapeutics
  • [Show abstract] [Hide abstract]
    ABSTRACT: 1-(Benzothiazol-2-yl)-1-(4-chlorophenyl)ethanol (1) was identified as a positive allosteric modulator (PAM) of the CaSR in a functional cell-based assay. This compound belongs to a class of compounds that is structurally distinct from other known positive allosteric modulators, for example, the phenylalkylamines cinacalcet, a modified analog (13) potently suppressed parathyroid hormone (PTH) release in rats, consistent with its profile as a PAM of CaSRs.
    No preview · Article · Oct 2010 · Bioorganic & medicinal chemistry letters
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel class of CB1 inverse agonists was discovered. To efficiently establish structure-activity relationships (SARs), new synthetic methodologies amenable for parallel synthesis were developed. The compounds were evaluated in a mammalian cell-based functional assay and in radioligand binding assays expressing recombinant human cannabinoid receptors (CB1 and CB2). In general, all of the compounds exhibited high binding selectivity at CB1 vs CB2 and the general SAR revealed a lead compound 11-(4-chlorophenyl)dibenzo[b,f][1,4]thiazepine-8-carboxylic acid butylamide (12e) which showed excellent in vivo activity in pharmacodynamic models related to CB1 receptor activity. The low solubility that hampered the development of 12e was solved leading to a potential preclinical candidate 11-(3-chloro-4-fluorophenyl)dibenzo[b,f][1,4]thiazepine-8-carboxylic acid butylamide (12h).
    No preview · Article · May 2009 · Journal of Medicinal Chemistry