Robin T. Garrod

Cornell University, Ithaca, NY, United States

Are you Robin T. Garrod?

Claim your profile

Publications (45)244.14 Total impact

  • Source
    Tyler Pauly · Robin T. Garrod
    [Show abstract] [Hide abstract]
    ABSTRACT: Computational models of interstellar gas-grain chemistry have historically adopted a single dust-grain size of 0.1 micron, assumed to be representative of the size distribution present in the interstellar medium. Here, we investigate the effects of a broad grain-size distribution on the chemistry on dust-grain surfaces and the subsequent build-up of molecular ices on the grains, using a three-phase gas-grain chemical model of a quiescent dark cloud. We include an explicit treatment of the grain temperatures, governed both by the visual extinction of the cloud and the size of each individual grain-size population. We find that the temperature difference plays a significant role in determining the total bulk ice composition across the grain-size distribution, while the effects of geometrical differences between size populations appear marginal. We also consider collapse from a diffuse to a dark cloud, allowing dust temperatures to fall. Under the initial diffuse conditions, small grains are too warm to promote grain-mantle build-up, with most ices forming on the mid-sized grains. As collapse proceeds, the more abundant, smallest grains cool and become the dominant ice carriers; the large population of small grains means that this ice is distributed across many grains, with perhaps no more than 40 monolayers of ice each (versus several hundred assuming a single grain size). This effect may be important for the subsequent processing and desorption of the ice during the hot-core phase of star-formation, exposing a significant proportion of the ice to the gas phase, increasing the importance of ice-surface chemistry and surface-gas interactions.
    Preview · Article · Dec 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Over the past five decades, radio astronomy has shown that molecular complexity is a natural outcome of interstellar chemistry, in particular in star forming regions. However, the pathways that lead to the formation of complex molecules are not completely understood and the depth of chemical complexity has not been entirely revealed. In addition, the sulfur chemistry in the dense interstellar medium is not well understood. We want to know the relative abundances of alkanethiols and alkanols in the Galactic Center source Sagittarius B2(N2), the northern hot molecular core in Sgr B2(N), whose relatively small line widths are favorable for studying the molecular complexity in space. We investigated spectroscopic parameter sets that were able to reproduce published laboratory rotational spectra of ethanethiol and studied effects that modify intensities in the predicted rotational spectrum of ethanol. We used the Atacama Large Millimeter Array (ALMA) in its Cycles~0 and 1 for a spectral line survey of Sagittarius B2(N) between 84 and 114.4 GHz. These data were analyzed by assuming local thermodynamic equilibrium (LTE) for each molecule. Our observations are supplemented by astrochemical modeling; a new network is used for the first time that includes reaction pathways for alkanethiols. The column density ratios involving methanol, ethanol, and methanethiol in Sgr B2(N2) are similar to values reported for Orion KL, but those involving ethanethiol are significantly different and suggest that the detection of ethanethiol reported toward Orion KL is uncertain. Our chemical model presently does not permit the prediction of sufficiently accurate column densities of alkanethiols or their ratios among alkanethiols and alkanols. Therefore, additional observational results are required to establish the level of C2H5SH in the dense and warm interstellar medium with certainty.
    Full-text · Article · Dec 2015 · Astronomy and Astrophysics
  • Source
    A. Belloche · H. S. P. Müller · R. T. Garrod · K. M. Menten
    [Show abstract] [Hide abstract]
    ABSTRACT: Deuteration is a powerful tracer of the history of the cold prestellar phase in star forming regions. Apart from methanol, little is known about deuterium fractionation of complex organic molecules in the interstellar medium, especially in high mass star forming regions. We use a spectral line survey performed with ALMA to search for deuterated complex organic molecules toward the hot molecular core Sgr B2(N2). Population diagrams and integrated intensity maps are constructed to fit rotational temperatures and emission sizes for each molecule. Column densities are derived by modelling the full spectrum under the LTE assumption. The results are compared to predictions of two astrochemical models that treat the deuteration process. We report the detection of CH2DCN toward Sgr B2(N2) with a deuteration level of 0.4%, and tentative detections of CH2DOH, CH2DCH2CN, the chiral molecule CH3CHDCN, and DC3N with levels in the range 0.05%-0.12%. A stringent deuteration upper limit is obtained for CH3OD (<0.07%). Upper limits in the range 0.5-1.8% are derived for the three deuterated isotopologues of vinyl cyanide, the four deuterated species of ethanol, and CH2DOCHO. Ethyl cyanide is less deuterated than methyl cyanide by at least a factor five. Except for methyl cyanide, the measured deuteration levels lie at least a factor four below the predictions of current astrochemical models. The deuteration levels in Sgr B2(N2) are also lower than in Orion KL by a factor of a few up to a factor ten. The discrepancy between the deuteration levels of Sgr B2(N2) and the predictions of chemical models, and the difference between Sgr B2(N2) and Orion KL may both be due to the higher kinetic temperatures that characterize the Galactic Center region compared to nearby clouds. Alternatively, they may result from a lower overall abundance of deuterium itself in the Galactic Center region by up to a factor ten.
    Preview · Article · Nov 2015 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Both grain surface and gas phase chemistry have been invoked to explain the disparate relative abundances of methyl formate and its structural isomers acetic acid and glycolaldehyde in the Sgr B2(N) star-forming region. While a network of grain surface chemistry involving radical–radical reactions during the warm-up phase of a hot core is the most chemically viable option proposed to date, neither qualitative nor quantitative agreement between modeling and observation has yet been obtained. In this study, we seek to test additional grain surface and gas phase processes to further investigate methyl formate-related chemistry by implementing several modifications to the Ohio State University gas/grain chemical network. We added two new gas phase chemical pathways leading to methyl formate, one involving an exothermic, barrierless reaction of protonated methanol with neutral formic acid; and one involving the reaction of protonated formic acid with neutral methanol to form both the cis and trans forms of protonated methyl formate. In addition to these gas phase processes, we have also investigated whether the relative product branching ratios for methanol photodissociation on grains influence the relative abundances of methyl formate and its structural isomers. We find that while the new gas phase formation pathways do not alter the relative abundances of methyl formate and its structural isomers, changes in the photodissociation branching ratios and adjustment of the overall timescale for warm-up can be used to explain their relative ratios in Sgr B2(N).
    Full-text · Article · Sep 2015 · The Astrophysical Journal
  • Source
    Jiao He · Gianfranco Vidali · Jean-Louis Lemaire · Robin T. Garrod
    [Show abstract] [Hide abstract]
    ABSTRACT: The quest to detect prebiotic molecules in space, notably amino acids, requires an understanding of the chemistry involving nitrogen atoms. Hydroxylamine (NH$_2$OH) is considered a precursor to the amino acid glycine. Although not yet detected, NH$_2$OH is considered a likely target of detection with ALMA. We report on an experimental investigation of the formation of hydroxylamine on an amorphous silicate surface via the oxidation of ammonia. The experimental data are then fed into a simulation of the formation of NH$_2$OH in dense cloud conditions. On ices at 14 K and with a modest activation energy barrier, NH$_2$OH is found to be formed with an abundance that never falls below a factor 10 with respect to NH$_3$. Suggestions of conditions for future observations are provided.
    Full-text · Article · Jan 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Massive young stellar objects (MYSOs) with hot cores are classic sources of complex organic molecules. The origins of these molecules in such sources, as well as the small- and large-scale differentiation between nitrogen- and oxygen-bearing complex species, are poorly understood. We aim to use complex molecule abundances toward a chemically less explored class of MYSOs with weak hot organic emission lines to constrain the impact of hot molecular cores and initial ice conditions on the chemical composition toward MYSOs. We use the IRAM 30m and the Submillimeter Array to search for complex organic molecules over 8-16 GHz in the 1~mm atmospheric window toward three MYSOs with known ice abundances, but without luminous molecular hot cores. Complex molecules are detected toward all three sources at comparable abundances with respect to CH$_3$OH to classical hot core sources. The relative importance of CH$_3$CHO, CH$_3$CCH, CH$_3$OCH$_3$, CH$_3$CN, and HNCO differ between the organic-poor MYSOs and hot cores, however. Furthermore, the N-bearing molecules are generally concentrated toward the source centers, while most O- and C-bearing molecules are present both in the center and in the colder envelope. Gas-phase HNCO/CH$_3$OH ratios are tentatively correlated with the ratios of NH$_3$ ice over CH$_3$OH ice in the same lines of sight, which is consistent with new gas-grain model predictions. Hot cores are not required to form complex organic molecules, and source temperature and initial ice composition both seem to affect complex organic distributions toward MYSOs. To quantify the relative impact of temperature and initial conditions requires, however, a larger spatially resolved survey of MYSOs with ice detections.
    Preview · Article · Jan 2015 · Astronomy and Astrophysics
  • Source
    A. E. Tsitali · A. Belloche · R. T. Garrod · B. Parise · K. M. Menten
    [Show abstract] [Hide abstract]
    ABSTRACT: The Chamaeleon clouds are excellent targets for low-mass star formation studies. Cha I and II are actively forming stars while Cha III shows no sign of ongoing star formation. We aim to determine the driving factors that have led to the very different levels of star formation activity in Cha I and III and examine the dynamical state and possible evolution of the starless cores within them. Observations were performed in various molecular transitions with APEX and Mopra. Five cores are gravitationally bound in Cha I and one in Cha III. The infall signature is seen toward 8-17 cores in Cha I and 2-5 cores in Cha III, which leads to a range of 13-28% of the cores in Cha I and 10-25% of the cores in Cha III that are contracting and may become prestellar. Future dynamical interactions between the cores will not be dynamically significant in either Cha I or III, but the subregion Cha I North may experience collisions between cores within ~0.7 Myr. Turbulence dissipation in the cores of both clouds is seen in the high-density tracers N2H+ 1-0 and HC3N 10-9. Evidence of depletion in the Cha I core interiors is seen in the abundance distributions of C17O, C18O, and C34S. Both contraction and static chemical models indicate that the HC3N to N2H+ abundance ratio is a good evolutionary indicator in the prestellar phase for both gravitationally bound and unbound cores. In the framework of these models, we find that the cores in Cha III and the southern part of Cha I are in a similar evolutionary stage and are less chemically evolved than the central region of Cha I. The measured HC3N/N2H+ abundance ratio and the evidence for contraction motions seen towards the Cha III starless cores suggest that Cha III is younger than Cha I Centre and that some of its cores may form stars in the future. The cores in Cha I South may on the other hand be transient structures. (abridged)
    Preview · Article · Nov 2014 · Astronomy and Astrophysics
  • Source

    Full-text · Article · Oct 2014 · Faraday Discussions
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The largest noncyclic molecules detected in the interstellar medium (ISM) are organic with a straight-chain carbon backbone. We report an interstellar detection of a branched alkyl molecule, iso-propyl cyanide (i-C3H7CN), with an abundance 0.4 times that of its straight-chain structural isomer. This detection suggests that branched carbon-chain molecules may be generally abundant in the ISM. Our astrochemical model indicates that both isomers are produced within or upon dust grain ice mantles through the addition of molecular radicals, albeit via differing reaction pathways. The production of iso-propyl cyanide appears to require the addition of a functional group to a nonterminal carbon in the chain. Its detection therefore bodes well for the presence in the ISM of amino acids, for which such side-chain structure is a key characteristic.
    Preview · Article · Sep 2014 · Science
  • Source
    Robin T. Garrod
    [Show abstract] [Hide abstract]
    ABSTRACT: The first off-lattice Monte Carlo kinetics model of interstellar dust-grain surface chemistry is presented. The positions of all surface particles are determined explicitly, according to the local potential minima resulting from the pair-wise interactions of contiguous atoms and molecules, rather than by a pre-defined lattice structure. The model is capable of simulating chemical kinetics on any arbitrary dust-grain morphology, as determined by the user-defined positions of each individual dust-grain atom. A simple method is devised for the determination of the most likely diffusion pathways and their associated energy barriers for surface species. The model is applied to a small, idealized dust grain, adopting various gas densities and using a small chemical network. Hydrogen and oxygen atoms accrete onto the grain, to produce H2O, H2, O2 and H2O2. The off-lattice method allows the ice structure to evolve freely; ice mantle porosity is found to be dependent on the gas density, which controls the accretion rate. A gas density of 2 x 10^{4} cm^{-3}, appropriate to dark interstellar clouds, is found to produce a fairly smooth and non-porous ice mantle. At all densities, H2 molecules formed on the grains collect within the crevices that divide nodules of ice, and within micropores (whose extreme inward curvature produces strong local potential minima). The larger pores produced in the high-density models are not typically filled with H2. Direct deposition of water molecules onto the grain indicates that amorphous ices formed in this way may be significantly more porous than interstellar ices that are formed by surface chemistry.
    Preview · Article · Oct 2013 · The Astrophysical Journal
  • Source
    Robin T Garrod · Susanna L. Widicus Weaver
    [Show abstract] [Hide abstract]
    ABSTRACT: The past decade has seen great advances in the simulation of hot-core chemistry. Significant efforts have been made to understand the formation of complex organic molecules in starforming regions, in light of the apparent deficiency of gas-phase processes. As a result, a greater emphasis has been placed on the detailed treatment of grain-surface and bulk-ice processes and their interactions with the gas phase. Chemical kinetics models based on rate equations can be used to examine the complex chemistry of hot-core regions, and great advances have been made in the implementation of Monte Carlo simulations, although, in both cases, the treatment of detailed physical structure within the dust-grain ice mantles remains a challenge. Sophisticated models are now routinely used to combine gasphase, grain-surface, and bulk-ice chemical treatments, while their integration with more realistic physical models of specific sources has become important for the simulation of molecular emission spectra. Additionally, chemical networks used for hot-core models now incorporate chemistry of direct biological significance, including formation mechanisms for amino acids and sugars. The results of these modeling studies can be directly compared to the complexity observed with the newest generation of observational instruments, which provide quantitative information that can be benchmarked against the models. Despite these successes, there remains a large gap between current modeling capabilities and the objective of a full, comprehensive model of star-formation environments. Chemical reaction networks are far from complete, and many of the parameters therein are educated guesses at best, while detailed treatments of ice structure are yet in their infancy. Likewise, physical models that properly account for the hydrodynamical processes occurring in hot cores have not yet been coupled with the more comprehensive chemical networks necessary to examine the chemistry of star-forming regions; indeed, the dynamics of high-mass star formation are currently a matter of considerable debate. Nonetheless, the results from the current chemical models of hot cores are valuable tools for comparison with observations; the simulations agree well with observations for the most abundant molecular species, and advances in the translation of chemical model results into directly observable quantities will allow more specific predictions to be made for individual sources. In the coming years, models of hot-core chemistry will need to advance and expand in several different directions, both to address current challenges and to incorporate new information from high-quality astronomical observations and chemical experiments. However, one might also expect that these advances will place yet greater technical demands on the computational models, some of which already operate close to the limits of feasible run times. The breadth of chemical and physical processes considered, and the resultant constraints placed upon the models, will require that astrochemists not be too dogmatic in the demand that every part of a model be stateof- the-art; even with the best computers in the world, such models of astrophysical sources will never be entirely comprehensive. The choice of whether detailed chemistry, detailed ice structure, detailed dynamics, and/or detailed radiative transfer are used must depend on the choice of problem and the abilities of individual scientists to best exploit their own capabilities. However, in spite of the inevitable incompleteness of astrochemical models, the past few years have demonstrated that the models can reliably reproduce many facets of the observational data, that they can explain the microscopic processes occurring on astronomical scales, and that they can be used to guide future observational strategies for hot-core sources.
    Full-text · Article · Sep 2013 · Chemical Reviews
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Based on astrochemical theory, the complex molecular composition around high-mass YSOs should evolve from the outer envelope in toward the central hot region as a sequence of temperature dependent chemical pathways are activated in ices and in the gas-phase. The resulting complex molecules have been broadly classified into three generations dependent on the temperature (<25, >25, and >100 K) required for formation. We combine IRAM 30m and Submillimeter Array observations to explore the spatial distribution of organic molecules around the high-mass young stellar object NGC 7538 IRS9, whose weak complex molecule emission previously escaped detection, quantifying the emission and abundance profiles of key organic molecules as a function of distance from the central protostar. We find that emission from N-bearing organics and saturated O-bearing organics present large increases in emission around 8000 AU and R<3000 AU, while O-bearing molecules and hydrocarbons do not. The increase in flux from some complex molecules in the envelope, around 8000 AU or 25 K, is consistent with recent model predictions of an onset of complex ice chemistry at 20-30 K. The emission increase for some molecules at R<3000 AU suggests the presence of a weak hot core, where thermal ice evaporation and hot gas-phase chemistry drives the chemistry. Complex organics thus form at all radii and temperatures around this protostar, but the composition changes dramatically as the temperature increases, which is used to constrain the chemical generation(s) to which different classes of molecule belong.
    Preview · Article · May 2013 · The Astrophysical Journal
  • Source
    Robin T. Garrod
    [Show abstract] [Hide abstract]
    ABSTRACT: A new chemical model is presented that simulates fully-coupled gas-phase, grain-surface and bulk-ice chemistry in hot cores. Glycine (NH2CH2COOH), the simplest amino acid, and related molecules such as glycinal, propionic acid and propanal, are included in the chemical network. Glycine is found to form in moderate abundance within and upon dust-grain ices via three radical-addition mechanisms, with no single mechanism strongly dominant. Glycine production in the ice occurs over temperatures ~40-120 K. Peak gas-phase glycine fractional abundances lie in the range 8 x 10^{-11} - 8 x 10^{-9}, occuring at ~200 K, the evaporation temperature of glycine. A gas-phase mechanism for glycine production is tested and found insignificant, even under optimal conditions. A new spectroscopic radiative-transfer model is used, allowing the translation and comparison of the chemical-model results with observations of specific sources. Comparison with the nearby hot-core source NGC 6334 IRS1 shows excellent agreement with integrated line intensities of observed species, including methyl formate. The results for glycine are consistent with the current lack of a detection of this molecule toward other sources; the high evaporation temperature of glycine renders the emission region extremely compact. Glycine detection with ALMA is predicted to be highly plausible, for bright, nearby sources with narrow emission lines. Photodissociation of water and subsequent hydrogen-abstraction from organic molecules by OH, and NH2, are crucial to the build-up of complex organic species in the ice. The inclusion of alternative branches within the network of radical-addition reactions appears important to the abundances of hot-core molecules; less favorable branching ratios may remedy the anomalously high abundance of glycolaldehyde predicted by this and previous models.
    Preview · Article · Feb 2013 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the molecular evolution and D/H abundance ratios that develop as star formation proceeds from a dense-cloud core to a protostellar core, by solving a gas-grain reaction network applied to a 1-D radiative hydrodynamic model with infalling fluid parcels. Spatial distributions of gas and ice-mantle species are calculated at the first-core stage, and at times after the birth of a protostar. Gas-phase methanol and methane are more abundant than CO at radii $r\lesssim 100$ AU in the first-core stage, but gradually decrease with time, while abundances of larger organic species increase. The warm-up phase, when complex organic molecules are efficiently formed, is longer-lived for those fluid parcels in-falling at later stages. The formation of unsaturated carbon chains (warm carbon-chain chemistry) is also more effective in later stages; C$^+$, which reacts with CH$_4$ to form carbon chains, increases in abundance as the envelope density decreases. The large organic molecules and carbon chains are strongly deuterated, mainly due to high D/H ratios in the parent molecules, determined in the cold phase. We also extend our model to simulate simply the chemistry in circumstellar disks, by suspending the 1-D infall of a fluid parcel at constant disk radii. The species CH$_3$OCH$_3$ and HCOOCH$_3$ increase in abundance in $10^4-10^5$ yr at the fixed warm temperature; both also have high D/H ratios.
    Full-text · Article · Oct 2012 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the molecular evolution and D/H abundance ratios that develop as star formation proceeds from dense cloud cores to protostellar cores. We solve a gas-grain reaction network, which is extended to include multi-deuterated species, using a 1-D radiative hydrodynamic model with infalling fluid parcels to derive molecular distribution in assorted evolutionary stages. We find that the abundances of large organic species in the central region increase with time. The duration of the warm-up phase, in which large organic species are efficiently formed, is longer in infalling fluid parcels at later stages. Formation of unsaturated carbon chains in the CH4 sublimation zone (warm carbon chain chemistry) is more effective in later stage. The carbon ion, which reacts with CH4 to form carbon chains, increases in abundance as the envelope density decreases. The large organic molecules and carbon chains are both heavily deuterated, mainly because their mother molecules have high D/H ratios, which are set in the cold phase. The observed CH2DOH/CH3OH ratio towards protostars is reproduced if we assume that the grain-surface exchange and abstraction reactions of CH3OH + D occurs efficiently. In our 1-D collapse model, the fluid parcels directly fall into the protostar, and the warm-up phase in the fluid parcels is rather short. But, in reality, a circumstellar disk is formed, and fluid parcels will stay there for a longer timescale than a free-fall time. We investigate the molecular evolution in such a disk by assuming that a fluid parcel stays at a constant temperature (i.e. a fixed disk radius) after the infall. The species CH3OCH3 and HCOOCH3 become more abundant in the disk than in the envelope. Both have high D/H abundance ratios as well.
    No preview · Article · Jul 2012
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High angular resolution observations of dense molecular cores show that these cores can be clumpier at smaller scales and that some of these clumps can also be unbound or transient. The use of chemical models of the evolution of the molecular gas provides a way to probe the physical properties of the clouds. We study the properties of the clump and interclump medium in the starless CS core in LDN 673 by carrying out a molecular line survey with the IRAM 30-m telescope towards two clumps and two interclump positions. We also observed the 1.2-mm continuum with the MAMBO-II bolometer at IRAM. The dust continuum map shows four condensations, three of them centrally peaked, coinciding with previously identified submillimetre sources. We confirm that the denser clump of the region, n ∼ 3.6 × 105 cm−3, is also the more chemically evolved, and it could still undergo further fragmentation. The interclump medium positions are denser than previously expected, likely n ∼ 1 × 103–1 × 104 cm−3 due to contamination, and are chemically young, similar to the gas in the lower density clump position. We argue that the density contrast between these positions and their general young chemical age would support the existence of transient clumps in the lower density material of the core. We were also able to find reasonable fits of the observationally derived chemical abundances to models of the chemistry of transient clumps.
    Full-text · Article · Jun 2012 · Monthly Notices of the Royal Astronomical Society
  • Source
    Robin T. Garrod · Tyler Pauly
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the formation and evolution of interstellar dust-grain ices under dark-cloud con-ditions, with a particular emphasis on CO 2 . We use a three-phase model (gas/surface/mantle) to simulate the coupled gas–grain chemistry, allowing the distinction of the chemically-active surface from the ice layers preserved in the mantle beneath. The model includes a treatment of the compe-tition between barrier-mediated surface reactions and thermal-hopping processes. The results show excellent agreement with the observed behavior of CO 2 , CO and water ice in the interstellar medium. The reaction of the OH radical with CO is found to be efficient enough to account for CO 2 ice pro-duction in dark clouds. At low visual extinctions, with dust temperatures >∼12 K, CO 2 is formed by direct diffusion and reaction of CO with OH; we associate the resultant CO 2 -rich ice with the obser-vational polar CO 2 signature. CH 4 ice is well correlated with this component. At higher extinctions, with lower dust temperatures, CO is relatively immobile and thus abundant; however, the reaction of H and O atop a CO molecule allows OH and CO to meet rapidly enough to produce a CO:CO 2 ratio in the range ∼2–4, which we associate with apolar signatures. We suggest that the observational apolar CO 2 /CO ice signatures in dark clouds result from a strongly segregated CO:H 2 O ice, in which CO 2 resides almost exclusively within the CO component. Observed visual-extinction thresholds for CO 2 , CO and H 2 O are well reproduced by depth-dependent models. Methanol formation is found to be strongly sensitive to dynamical timescales and dust temperatures.
    Preview · Article · Jun 2011 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent models of hot cores have incorporated previously-uninvestigated chemical pathways that lead to the formation of complex organic molecules (COMs; i.e. species containing six or more atoms). In addition to the gas-phase ion-molecule reactions long thought to dominate the organic chemistry in these regions, these models now include photodissociation-driven grain surface reaction pathways that can also lead to COMs. Here, simple grain surface ice species photodissociate to form small radicals such as OH, CH3, CH2OH, CH3O, HCO, and NH2. These species become mobile at temperatures above 30 K during the warm-up phase of star formation. Radical-radical addition reactions on grain surfaces can then form an array of COMs that are ejected into the gas phase at higher temperatures. Photodissociation experiments on pure and mixed ices also show that these complex molecules can indeed form from simple species. The molecules predicted to form from this type of chemistry reasonably match the organic inventory observed in high mass hot cores such as Sgr B2(N) and Orion-KL. However, the relative abundances of the observed molecules differ from the predicted values, and also differ between sources. Given this disparity, it remains unclear whether grain surface chemistry governed by photodissociation is the dominant mechanism for the formation of COMs, or whether other unexplored gas-phase reaction pathways could also contribute significantly to their formation. The influence that the physical conditions of the source have on the chemical inventory also remains unclear. Here we overview the chemical pathways for COM formation in hot cores. We also present new modeling results that begin to narrow down the possible routes for production of COMs based on the observed relative abundances of methyl formate (HCOOCH3) and its C2H4O2 structural isomers.
    Full-text · Article · May 2011 · Proceedings of the International Astronomical Union
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the molecular evolution in star forming cores from dense cloud cores (nH ~ 104 cm−3, T ~ 10 K) to protostellar cores. A detailed gas-grain reaction network is solved in infalling fluid parcels in 1-D radiation hydrodynamic model. Large organic molecules are mainly formed via grain-surface reaction at T ~ several 10 K and sublimated to the gas-phase at ~ 100 K, while carbon-chain species are formed at a few 10 K after the sublimation of CH4 ice. The former accounts for the high abundance of large organic molecules in hot corinos such as IRAS16293, and the latter accounts for the carbon chain species observed toward L1527. The relative abundance of carbon chain species and large organic species would depend on the collapse time scale and/or temperature in the dense core stage. The large organic molecules and carbon chains in the protostellar cores are heavily deuterated; although they are formed in the warm temperatures, their ingredients have high D/H ratios, which are set in the cold core phase and isothermal collapse phase. HCOOH is formed by the gas-phase reaction of OH with the sublimated H2CO, and is further enriched in Deuterium due to the exothermic exchange reaction of OH + D → OD + H.In the fluid parcels of the 1-D collapse model, warm temperature T. ~ several 10 K lasts for only ~ 104 yr, and the fluid parcels fall to the central star in ~ 100 yr after the temperature of the parcel rises to T ≥ 100 K. These timescales are determined by the size of the warm region and infall (~ free-fall) velocity: rwarm/tff. In reality, circum stellar disk is formed, in which fluid parcels stay for a longer timescale than the infall timescale. We investigate the molecular evolution in the disk by simply assuming that a fluid parcel stays at a constant temperature and density (i.e. a fixed disk radius) for 104 − 105 yrs. We found that some organic species which are underestimated in our 1-D collapse model, such as CH3OCH3 and HCOOCH3, become abundant in the disk. We also found that these disk species have very high D/H ratio as well, since their ingredients are highly deuterated.Finally we investigate molecular evolution in a 3D hydrodynamic simulation of star forming core. We found CH3OH are abundant in the vicinity of the first core. The abundances of large organic species are determined mainly by the local temperature (sublimation), because of the short lifetime of the first core and the efficient mass accretion via angular momentum transfer.
    Full-text · Article · May 2011 · Proceedings of the International Astronomical Union
  • [Show abstract] [Hide abstract]
    ABSTRACT: Complex organic molecules have been detected with space- and ground-based telescopes toward low- and high-mass star-forming regions, demonstrating the existence of efficient astrophysical pathways to chemical complexity. Understanding the origins of these species are crucial to use them as tracers of physical environments, to predict the prebiotic evolution during star- and planet-formation, and to plan future observations with e.g. JWST. Many complex organics form on interstellar grains, in ices that evolve with their environment and finally evaporate as the grains are heated by new-born stars or by shocks. This ice evolution has been explored through a combination of Spitzer spectra of ices, laboratory simulations of UV induced ice photochemistry, and millimeter observations tracing complex ice evaporation. The experiments show that UV irradiation of protostellar ices is efficient enough to explain the complex molecule observations in so called protostellar 'hot cores'. Moreover, the experiments predict that before the onset of thermal evaporation close to the protostar, small fractions of the complex ice will continuously evaporate non-thermally due to photodesorption, resulting in gas-phase fingerprints of the ice composition as it evolves. Some of the proposed chemical scenarios can be tested by current facilities, while others require more detailed experiments as well as access to upcoming NASA missions.
    No preview · Article · May 2011

Publication Stats

1k Citations
244.14 Total Impact Points

Institutions

  • 2009-2015
    • Cornell University
      • • Department of Astronomy
      • • Center for Radiophysics and Space Research (CRSR)
      Ithaca, NY, United States
  • 2007-2008
    • Max Planck Institute for Radio Astronomy
      Bonn, North Rhine-Westphalia, Germany
  • 2005-2007
    • The Ohio State University
      • Department of Physics
      Columbus, Ohio, United States
  • 2003
    • University College London
      • Department of Physics and Astronomy
      London, ENG, United Kingdom