Edward E Morrison

Auburn University, AUO, Alabama, United States

Are you Edward E Morrison?

Claim your profile

Publications (61)158.32 Total impact

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Using noninvasive in vivo functional magnetic resonance imaging (fMRI), we demonstrate that the enhancement of odorant response of olfactory receptor neurons by zinc nanoparticles leads to increase in activity in olfaction-related and higher order areas of the dog brain. To study conscious dogs, we employed behavioral training and optical motion tracking for reducing head motion artifacts. We obtained brain activation maps from dogs in both anesthetized state and fully conscious and unrestrained state. The enhancement effect of zinc nanoparticles was higher in conscious dogs with more activation in higher order areas as compared with anesthetized dogs. In conscious dogs, voxels in the olfactory bulb and hippocampus showed higher activity to odorants mixed with zinc nanoparticles as compared with pure odorants, odorants mixed with gold nanoparticles as well as zinc nanoparticles alone. These regions have been implicated in odor intensity processing in other species including humans. If the enhancement effect of zinc nanoparticles observed in vivo are confirmed by future behavioral studies, zinc nanoparticles may provide a way for enhancing the olfactory sensitivity of canines for detection of target substances such as explosives and contraband substances at very low concentrations, which would otherwise go undetected.
    Full-text · Article · Oct 2015 · Chemical Senses
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A composition, system and method for modifying an olfactory response to an odorant is disclosed. In some embodiments, the composition includes crystalline metal nanoparticles dispersed in an aqueous medium. The composition is applied to olfactory tissues using a suitable applicator or dispenser. The metal nanoparticles are believed to interact with a G-protein coupled to receptor located in the cilia to moderate (enhance or reduce) sensitivity or ability to smell particular odorants. In accordance with an embodiment of the invention, the composition includes one or more odorants.
    Full-text · Patent · Sep 2015
  • Source

    Full-text · Conference Paper · Jun 2015
  • Source
    John C. Dennis · Shelly Aono · Vitaly J. Vodyanoy · Edward E. Morrison
    [Show abstract] [Hide abstract]
    ABSTRACT: The main olfactory epithelium (MOE) has provided an excellent model for studying several aspects of neural development for more than a century. This chapter reviews the development and cytoarchitecture of the MOE, a recently discovered defense mechanism that protects the olfactory sensory apparatus and the nasal cavity in general, and a novel functional property of olfactory receptor neuron (ORN) signal transduction. Microvillar cells have neuron-like morphology and are observed in the apical neuroepithelium. Olfactory ensheathing cells (OECs) have been shown to promote axon growth and recovery in several nerve lesion models, suggesting that their presence is responsible for the permissive and dramatic olfactory axogenesis. Genetic manipulations and deletion of OMP results in slower odorant response kinetics in EOG, single cell recordings, and calcium imaging. The central nervous system (CNS) contains zinc, and its local concentrations and subcellular segregation are tightly regulated.
    Full-text · Chapter · May 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The default mode network (DMN) in humans has been extensively studied using seed-based correlation analysis (SCA) and independent component analysis (ICA). While DMN has been observed in monkeys as well, there are conflicting reports on whether they exist in rodents. Dogs are higher mammals than rodents, but cognitively not as advanced as monkeys and humans. Therefore, they are an interesting species in the evolutionary hierarchy for probing the comparative functions of the DMN across species. In this study, we sought to know whether the DMN, and consequently its functions such as self-referential processing, are exclusive to humans/monkeys or can we also observe the DMN in animals such as dogs. To address this issue, resting state functional MRI data from the brains of lightly sedated dogs and unconstrained and fully awake dogs were acquired, and ICA and SCA were performed for identifying the DMN. Since anesthesia can alter resting state networks, confirming our results in awake dogs was essential. Awake dog imaging was accomplished by training the dogs to keep their head still using reinforcement behavioral adaptation techniques. We found that the anterior (such as anterior cingulate and medial frontal) and posterior regions (such as posterior cingulate) of the DMN were dissociated in both awake and anesthetized dogs.
    Full-text · Article · Jan 2015 · Brain Structure and Function
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A composition, system and method for modifying an olfactory response to an odorant is disclosed. In some embodiments, the composition includes crystalline metal nanoparticles dispersed in an aqueous medium. The composition isapplied to olfactory tissues using a suitable applicator or dispenser. The metal nanoparticles are believed to interact with a G-protein coupled to receptor located in the cilia to moderate (enhance or reduce) sensitivity or ability to smell particular odorants. In accordance with an embodiment of the invention, the composition includes one or more odorants.
    Full-text · Patent · Jul 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We depend upon the olfactory abilities of dogs for critical tasks such as detecting bombs, landmines, other hazardous chemicals and illicit substances. Hence, a mechanistic understanding of the olfactory system in dogs is of great scientific interest. Previous studies explored this aspect at the cellular and behavior levels; however, the cognitive-level neural substrates linking them have never been explored. This is critical given the fact that behavior is driven by filtered sensory representations in higher order cognitive areas rather than the raw odor maps of the olfactory bulb. Since sedated dogs cannot sniff, we investigated this using functional magnetic resonance imaging of conscious dogs. We addressed the technical challenges of head motion using a two pronged strategy of behavioral training to keep dogs' head as still as possible and a single camera optical head motion tracking system to account for residual jerky movements. We built a custom computer-controlled odorant delivery system which was synchronized with image acquisition, allowing the investigation of brain regions activated by odors. The olfactory bulb and piriform lobes were commonly activated in both awake and anesthetized dogs, while the frontal cortex was activated mainly in conscious dogs. Comparison of responses to low and high odor intensity showed differences in either the strength or spatial extent of activation in the olfactory bulb, piriform lobes, cerebellum, and frontal cortex. Our results demonstrate the viability of the proposed method for functional imaging of the olfactory system in conscious dogs. This could potentially open up a new field of research in detector dog technology.
    Full-text · Article · Jan 2014 · PLoS ONE
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Approximately 30% of infants in the United States are exposed to high doses of isoflavones resulting from soy infant formula consumption. Soybeans contain the isoflavones genistin and daidzin, which are hydrolyzed in the gastrointestinal tract to their genistein and daidzein aglycones. Both aglycones possess hormonal activity and may interfere with male reproductive development. Testosterone, which supports male fertility, is mainly produced by testicular Leydig cells. Our previous studies indicated that perinatal exposure of male rats to isoflavones induced proliferative activity in Leydig cells and increased testosterone concentrations into adulthood. However, the relevance of the neonatal period as part of the perinatal window of isoflavone exposure remains to be established. The present study examined the effects of exposure to isoflavones on male offspring of dams maintained on a casein-based control or whole soybean diet in the neonatal period, i.e., days 1 to 21 postpartum. Results showed that the soybean diet stimulated proliferative activity in developing Leydig cells while suppressing their steroidogenic capacity in adulthood. In addition, isoflavone exposure decreased production of anti-Müllerian hormone by Sertoli cells. Similar to our previous in vitro studies of genistein action in Leydig cells, daidzein induced proliferation and interfered with signaling pathways to suppress steroidogenic activity. Overall, data showed that the neonatal period is a sensitive window of exposure to isoflavones and support the view that both genistein and daidzein are responsible for biological effects associated with soy-based diets.
    Full-text · Article · Jan 2014 · Biology of Reproduction
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A composition, system and method for modifying an olfactory response to an odorant is disclosed. In some embodiments, the composition includes crystalline metal nanoparticles dispersed in an aqueous medium. The composition is applied to olfactory tissues using a suitable applicator or dispenser. The metal nanoparticles are believed to interact with a G-protein coupled to receptor located in the cilia to moderate (enhance or reduce) sensitivity or ability to smell particular odorants. In accordance with an embodiment of the invention, the composition includes one or more odorants.
    Full-text · Patent · Jan 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study investigates the vomeronasal organ in extant nocturnal strepsirhines as a model for ancestral primates. Cadaveric samples from 10 strepsirhine species, ranging from fetal to adult ages, were studied histologically. Dimensions of structures in the vomeronasal complex, such as the vomeronasal neuroepithelium (VNNE) and vomeronasal cartilage (VNC) were measured in serial sections and selected specimens were studied immunohistochemically to determine physiological aspects of the vomeronasal sensory neurons (VSNs). Osteological features corresponding to vomeronasal structures were studied histologically and related to 3-D CT reconstructions. The VNC consistently rests in a depression on the palatal portion of the maxilla, which we refer to as the vomeronasal groove (VNG). Most age comparisons indicate that in adults VNNE is about twice the length compared with perinatal animals. In VNNE volume, adults are 2- to 3-fold larger compared with perinatal specimens. Across ages, a strong linear relationship exists between VNNE dimensions and body length, mass, and midfacial length. Results indicate that the VNNE of nocturnal strepsirhines is neurogenic postnatally based on GAP43 expression. In addition, based on Olfactory Marker Protein expression, terminally differentiated VSNs are present in the VNNE. Therefore, nocturnal strepsirhines have basic similarities to rodents in growth and maturational characteristics of VSNs. These results indicate that a functional vomeronasal system is likely present in all nocturnal strepsirhines. Finally, given that osteological features such as the VNG are visible on midfacial bones, primate fossils can be assessed to determine whether primate ancestors possessed a vomeronasal complex morphologically similar to that of modern nocturnal strepsirhines. Anat Rec, 296:1881-1894, 2013. © 2013 Wiley Periodicals, Inc.
    Full-text · Article · Dec 2013 · The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background / Purpose: Head movement is a critical issue for fMRI, as motion on the order of voxel resolution will degrade the data. Motion becomes even more critical for high-field, high-resolution methods and is especially problematic for the study of awake animals. Main conclusion: The results with integration of optical head tracking parameters showed the same basic activation pattern obtained by using only SPM realignment parameters, but also additional areas of activation in the frontal cortex, olfactory bulb, and cerebellum. 171 voxels were activated during the olfactory testing using only SPM alignment, and 591 voxels were activated using SPM plus camera motion. The overlap between the two methods was 167 voxels. N=5 subjects.
    Full-text · Conference Paper · Oct 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A composition, system and method for modifying an olfactory response to an odorant is disclosed. In some embodiments, the composition includes crystalline metal nanoparticles dispersed in an aqueous medium. The composition is applied to olfactory tissues using a suitable applicator or dispenser. The metal nanoparticles are believed to interact with a G-protein coupled to receptor located in the cilia to moderate (enhance or reduce) sensitivity or ability to smell particular odorants. In accordance with an embodiment of the invention, the composition includes one or more odorants.
    Full-text · Patent · Sep 2012
  • [Show abstract] [Hide abstract]
    ABSTRACT: The melanocortin receptors (MCRs 1-5) are G protein coupled-receptors (GPCRs) that regulate food intake, inflammation, skin pigmentation, sexual function and steroidogenesis. Their peptide ligands, the melanocortins, are α-, β- and γ-melanocyte-stimulating hormone and adrenocorticotropic hormone (ACTH) all of which are secreted from the anterior pituitary gland under hypothalamic control. MC2R binds ACTH but has no affinity for the other melanocortins and is, thereby, pharmacologically different from MCRs that bind those ligands. Evidence suggests that elevated GPCRs transactivate the androgen receptor (AR), the critical mediator of prostate cell growth, and consequently promote prostate cancer cell proliferation. It may be that reduced central melanocortin signaling is coincidental with reversal of prostate cancer cachexia, but no data are available on the expression of, or the role for, MCRs in prostate cancer. Here, we show that MCR (1-5) mRNAs are expressed in androgen-dependent LNCaP and androgen-independent PC3 and DU-145 human prostate cancer cell lines. Further, MC2R, the specific target of ACTH, is expressed in LNCaP, PC3 and DU-145 cells. Among the several synthetic MCR peptide ligands that we used, only ACTH promoted concentration-dependent cell proliferation in the three cell lines as shown by MTT cell proliferation assay. In LNCaP cells, the effect was additive with testosterone stimulation and was partially blunted with SHU9119, a non-selective MCR antagonist. In the same cells, ACTH induced cAMP production and increased AR nuclear labeling in immunocytochemical assays. Our observations suggest that MC2R is involved in prostate carcinogenesis and that targeting MC2R signaling may provide a novel avenue in prostate carcinoma treatment.
    No preview · Article · Jul 2012 · International Journal of Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Many odorants related to manufactured explosives have low volatilities and are barely detectable as odors. We previously reported that zinc metal nanoparticles increased rat olfactory epithelium responses, measured by electroolfactogram (EOG), to several odorants. Here, we report that nanomolar concentrations of zinc metal nanoparticles strongly enhanced olfactory responses to the explosives related odorants cyclohexanone, methyl benzoate, acetophenone, and eugenol. Rat olfactory epithelium was exposed to metal nanoparticles and odorant responses were quantified by EOG. Zinc nanoparticles added to explosive odorants strongly increased the odorant response in a dose-dependent manner. The enzymatic breakdown of the second messenger cyclic adenosine monophosphate (cAMP) was prevented by adding the membrane-permeable phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX). This caused the olfactory cilia cAMP concentration to increase and generated EOG signals. The EOG responses generated by IBMX were not enhanced by zinc nanoparticles. Based on these observations, we conclude that zinc nanoparticles act at the receptor site and are involved in the initial events of olfaction. Our results suggest that zinc metal nanoparticles can be used to facilitate a canine detection of explosive odorants.
    Full-text · Article · Jan 2012 · Talanta
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although all platyrrhine primates possess a vomeronasal organ (VNO), few species have been studied in detail. Here, we revisit the microanatomy of the VNO and related features in serially sectioned samples from 41 platyrrhine cadavers (14 species) of mixed age. Procedures to identify terminally differentiated vomeronasal sensory neurons (VSNs) via immunolabeling of olfactory marker protein (OMP) were used on selected specimens. The VNO varies from an elongated epithelial tube (e.g., Ateles fusciceps) to a dorsoventrally expanded sac (e.g., Saguinus spp.). The cartilage that surrounds the VNO is J-shaped or U-shaped in most species, and articulates with a groove on the bony palate. Preliminary results indicate a significant correlation between the length of this groove and length of the VNO neuroepithelium, indicating this feature may serve as a skeletal correlate. The VNO neuroepithelium could be identified in all adult primates except Alouatta, in which poor preservation prevented determination. The VNO of Ateles, described in detail for the first time, had several rows of VSNs and nerves in the surrounding lamina propria. Patterns of OMP-reactivity in the VNO of perinatal platyrrhines indicate that few or no terminally differentiated VSNs are present at birth, thus supporting the hypothesis that some platyrrhines may have delayed maturation of the VNO. From a functional perspective, all platyrrhines studied possess structures required for chemoreception (VSNs, vomeronasal nerves). However, some microanatomical findings, such as limited reactivity to OMP in some species, indicate that some lineages of New World monkeys may have a reduced or vestigial vomeronasal system.
    Full-text · Article · Dec 2011 · The Anatomical Record Advances in Integrative Anatomy and Evolutionary Biology
  • [Show abstract] [Hide abstract]
    ABSTRACT: Knowledge of the vomeronasal neuroepithelium (VNNE) microanatomy is disproportionately based on rodents. To broaden our knowledge, we examined olfactory marker protein (OMP) expression in a sample of twenty-three non-human primates. The density of OMP (+) vomeronasal sensory neurons (VSNs) in the VNNE was measured. Here we compared OMP (+) VSN density in five species of Saguinus (a genus of New World monkey) of different ages to a comparative primate sample that included representatives of every superfamily in which a VNO is postnatally present. In Saguinus spp., the VNNE at birth is thin, usually comprising one or two nuclear rows. At all ages studied, few VNNE cells are OMP reactive as view in coronal sections. In the comparative sample, the OMP (+) VSNs appear to be far more numerous in the spider monkey (another New World monkey) and the bushbaby (a distant relative). Other species (e.g., owl monkey) had a similar low density of OMP (+) VSNs as in Saguinus. These results expand our earlier finding that few VSNs are OMP (+) in Saguinus geoffroyi to other species of the genus. Our sample indicates that the number of OMP (+) VSNs in primates varies from ubiquitous to few with New World monkeys varying the most. The scarcity of OMP (+) cells in some primate VNOs reflects a lower number of terminally differentiated VSNs compared to a diverse range of mammals. If primates with relatively few OMP (+) VSNs have a functional vomeronasal system, OMP is not critical for stimulus detection.
    No preview · Article · Feb 2011 · Brain research
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The prostate cancer (PCa) cell lines LNCaP, PC-3, and DU-145 express peroxisome proliferator-activated receptor γ (PPARγ) but its role in PCa is unclear. Thiazolidinediones (TZDs), a family of PPARγ activators and type 2 anti-diabetic drugs, exhibit anti-tumor apoptotic effects in human PCa cell lines. Likewise, pharmacological inhibitors of fatty acid synthase (FASN), a metabolic enzyme highly expressed in PCa, induce apoptosis in prostate and other cancer cells. Here, we show positive correlation between PPARγ and FASN protein in PCa cell lines and synergism between TZDs and FASN blockers in PCa cell viability reduction and apoptosis induction. Combined TZDs/FASN has enhanced anti-tumor properties in both androgen-dependent LNCaP and androgen-independent PC-3 and DU-145 cells when compared with single drug exposure. Low concentrations (5-10 μM) of the TZD drug rosiglitazone failed to alter cell viability but, paradoxically, upregulated lipogenic genes [PPARγ, FASN, sterol regulatory element binding protein-1c (SREBP-1c) and acetyl-Co A carboxylase-1 (ACC1)], which diminish the apoptotic effects of rosiglitazone. The mean IC50 in all cell lines was 45 ± 2 μM for rosiglitazone compared with significantly lower 5 ± 1 μM for rosiglitazone plus the FASN blocker cerulenin, and 10.2 ± 2 μM for rosiglitazone plus the cerulenin synthetic analog C75. The IC50 for the combined rosiglitazone and FASN blockers contrasts with the relatively higher IC50 for rosiglitazone (45 ± 2 μM), the TZD drug troglitazone (13 ± 2 μM), cerulenin (32 ± 1 μM), or C75 (26 ± 3 μM) when these drugs were used alone. In summary, this study shows proof-of-principle for combining FASN blockers and TZDs for PCa treatment.
    Full-text · Article · Feb 2011 · International Journal of Oncology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mammalian olfactory epithelium can withstand the external environment, undergo life-long regeneration, and respond to thousands of odorant stimuli, making it an attractive system for a variety of studies. Previously, we described a long-lived olfactory coculture of olfactory epithelium and bulb tissues and we present here the kinetic properties of that culture system. Neonatal mouse epithelial-bulbar explants were grown for periods as long as 121 days in vitro (DIV), nearly doubling the survival time of our previously longest lived cultures. Cultures at all ages responded to air-borne odorants. The youngest cultures (1-15 DIV) showed shorter half-rise and half-decay times than older cultures (21-121 DIV), and were more variable in their half-decay times. Zinc nanoparticles enhanced electro-olfactogram responses of both younger and older cultures and both groups were immunopositive for olfactory marker protein. The results show that our olfactory culture model can support mature, odorant-responsive olfactory receptor neurons that possess many of the response features of in situ olfactory receptor neurons.
    Full-text · Article · Nov 2010 · Cells Tissues Organs
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Testicular Leydig cells, which are the predominant source of the male sex steroid hormone testosterone, express estrogen receptors (ESRs) and are subject to regulation by estrogen. Following ingestion, the two major isoflavones in soybeans, genistin and daidzin, are hydrolyzed by gut microflora to form genistein and daidzein, which have the capacity to bind ESRs and affect gene expression. Thus, the increasing use of soy-based products as nondairy sources of protein has raised concerns about the potential of these products to cause reproductive toxicity. In the present study, perinatal exposure of male rats to isoflavones induced proliferative activity in Leydig cells. Isoflavones have the capacity to act directly as mitogens in Leydig cells, because genistein treatment induced Leydig cell division in vitro. Genistein action regulating Leydig cell division involved ESRs, acting in concert with signaling molecules in the transduction pathway mediated by protein kinase B (AKT) and mitogen-activated protein kinase (MAPK). Enhanced proliferative activity in the prepubertal period increased Leydig cell numbers, which alleviated deficits in androgen biosynthesis and/or augmented serum and testicular testosterone concentrations in adulthood. Together, these observations indicate that the perinatal exposures of male rats to isoflavones affected Leydig cell differentiation, and they imply that including soy products in the diets of neonates has potential implications for testis function.
    Full-text · Article · Sep 2010 · Biology of Reproduction
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Organization: Auburn University PI: Vitaly Vodyanoy Purpose: To understand the nature of the phenomenon of enhancement olfaction by metal clusters and determine and characterize the involvement of metal nanoclusters in signal transduction of olfactory neurons. Specific aims: (1) Characterize electrical responses of olfactory neurons to odorants in presence in the presence of metal nanoclusters. Determine the specificity of interaction. Determine conditions controlling the enhancement of olfactory response including physical properties of metal nanoclusters, amino acid composition of metal binding sites, temperature, and pH. (2) Define and characterize mechanisms of the signal transduction enhancement by metal nanoclusters. Achievements: 1. The purpose of the research grant proposal and specific aims are met. 2. The project is resulted in three publication in prestigious highly rated refereed journals (please, see attached pdf files):
    Full-text · Technical Report · Jul 2010

Publication Stats

1k Citations
158.32 Total Impact Points

Institutions

  • 1992-2015
    • Auburn University
      • • Department of Anatomy, Physiology and Pharmacology
      • • College of Veterinary Medicine
      AUO, Alabama, United States
  • 1989-1995
    • Virginia Commonwealth University
      Ричмонд, Virginia, United States
  • 1983-1988
    • Florida State University
      • Department of Biological Science
      Tallahassee, Florida, United States