Tracy E Strecker

Baylor College of Medicine, Houston, Texas, United States

Are you Tracy E Strecker?

Claim your profile

Publications (3)

  • Source
    Tracy E Strecker · Qiang Shen · Yun Zhang · [...] · Powel H Brown
    [Show abstract] [Hide abstract] ABSTRACT: Lapatinib, a selective orally available inhibitor of epidermal growth factor receptor (EGFR) and ErbB2 receptor tyrosine kinases, is a promising agent for the treatment of breast cancer. We examined the effect of lapatinib on the development of mammary tumors in MMTV-erbB2 transgenic mice, which express wild-type ErbB2 under the control of the mouse mammary tumor virus promoter and spontaneously develop estrogen receptor (ER)-negative and ErbB2-positive mammary tumors by 14 months of age. Mice were treated from age 3 months to age 15 months with vehicle (n = 17) or lapatinib (30 or 75 mg/kg body weight; n = 16 mice per group) by oral gavage twice daily (6 d/wk). All statistical tests were two-sided. By 328 days after the start of treatment, all 17 (100%) of the vehicle-treated mice vs five (31%) of the 16 mice treated with high-dose lapatinib developed mammary tumors (P < .001). Among MMTV-erbB2 mice treated for 5 months (n = 20 mice per group), those treated with lapatinib had fewer premalignant lesions and noninvasive cancers in their mammary glands than those treated with vehicle (P = .02). Lapatinib also effectively blocked epidermal growth factor-induced signaling through the EGFR and ErbB2 receptors, suppressed cyclin D1 and epiregulin mRNA expression, and stimulated p27 mRNA expression in human mammary epithelial cells and in mammary epithelial cells from mice treated for 5 months with high-dose lapatinib. Thus, cyclin D1, epiregulin, and p27 may represent useful biomarkers of lapatinib response in patients. These data suggest that lapatinib is a promising agent for the prevention of ER-negative breast cancer.
    Full-text Article · Jan 2009 · Journal of the National Cancer Institute
  • Source
    Q Shen · I.P. Uray · Y Li · [...] · P.H. Brown
    [Show abstract] [Hide abstract] ABSTRACT: The activating protein-1 (AP-1) transcription factor transduces growth signals through signal transduction pathways to the nucleus, leading to the expression of genes involved in growth and malignant transformation in many cell types. We have previously shown that overexpression of a dominant negative form of the cJun proto-oncogene, a cJun dominant negative mutant (Tam67), blocks AP-1 transcriptional activity, induces a G(1) cell cycle block and inhibits breast cancer cell growth in vitro and in vivo. We found that AP-1 blockade by Tam67 in MCF-7 breast cancer cells downregulates cyclin D1 transcriptional activity by at least two mechanisms: by suppressing transcription at the known AP-1 binding site (-934/-928) and by suppressing growth factor-induced expression through suppressing E2F activation at the E2F-responsive site (-726/-719). AP-1 blockade also led to reduced expression of E2F1 and E2F2, but not E2F4, at the mRNA and protein levels. Chromatin immunoprecipitation and supershift assays demonstrated that AP-1 blockade caused decreased binding of E2F1 protein to the E2F site in the cyclin D1 promoter. We also found that Tam67 suppressed the expression of the E2F1 dimerizing partner, DP1 and E2F-upregulated cell cycle genes (cyclins E, A, B and D3) and enhanced the expression of E2F-downregulated cell cycle genes (cyclins G(2) and I). Reduced expression of other E2F-regulated genes was also seen with AP-1 blockade and E2F suppression. Thus, the AP-1 factor regulates the expression of cyclin D and E2F (the latter in turn regulates E2F-downstream genes), leading to cell cycle progression and breast cancer cell proliferation.
    Full-text Article · Feb 2008 · Oncogene
  • T. E. Strecker · Y. Zhang · J. L. Hill · [...] · P. H. Brown
    Conference Paper · Jan 2006