K. Kirk Shung

Daegu Gyeongbuk Institute of Science and Technology, Daikyū, Daegu, South Korea

Are you K. Kirk Shung?

Claim your profile

Publications (411)656.15 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Controlling cell functions for research and therapeutic purposes may open new strategies for the treatment of many diseases. An efficient and safe introduction of membrane impermeable molecules into target cells will provide versatile means to modulate cell fate. We introduce a new transfection technique that utilizes high frequency ultrasound without any contrast agents such as microbubbles, bringing a single-cell level targeting and size-dependent intracellular delivery of macromolecules. The transfection apparatus consists of an ultrasonic transducer with the center frequency of over 150 MHz and an epi-fluorescence microscope, entitled acoustic-transfection system. Acoustic pulses, emitted from an ultrasonic transducer, perturb the lipid bilayer of the cell membrane of a targeted single-cell to induce intracellular delivery of exogenous molecules. Simultaneous live cell imaging using HeLa cells to investigate the intracellular concentration of Ca2+ and propidium iodide (PI) and the delivery of 3 kDa dextran labeled with Alexa 488 were demonstrated. Cytosolic delivery of 3 kDa dextran induced via acoustic-transfection was manifested by diffused fluorescence throughout whole cells. Short-term (6 hr) cell viability test and long-term (40 hr) cell tracking confirmed that the proposed approach has low cell cytotoxicity.
    No preview · Article · Feb 2016 · Scientific Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper describes analog wideband receiver architecture consisting of a limiter and preamplifier, which reduces loss and increases bandwidth of high frequency ultrasound instrumentation. Typical analog front-end receivers do not perform well at high frequency operation because of limited bandwidth and high loss due to their inherent architecture. Parasitic impedances caused by the electronic interconnections also affect the loss and bandwidth performance of analog front-end receivers. In order to overcome these issues, we designed new analog wideband receiver architecture. The proposed receiver produced lower loss and wider bandwidth compared to a one of the commercial receiver such as Panametrics 5900PR. This is because the loss of the transistor-diode-based limiter (–0.1 dB) is lower than that of the commercial limiter (–5.9 dB) at 70 MHz and the bandwidth of the designed preamplifier (>120 MHz) is wider than that of the Panametrics 5900PR (118 MHz). Our receiver design provides an alternative solution for high frequency ultrasound instrumentation.
    No preview · Article · Feb 2016 · Journal of Medical Imaging and Health Informatics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Muscle strain is still awanting a noninvasive quantitatively diagnosis tool. High frequency ultrasound (HFU) improves image resolution for monitoring changes of tissue structures, but the biomechanical factors may influence ultrasonography during injury detection. We aim to illustrate the ultrasonic parameters to present the histological damage of overstretched muscle with the consideration of biomechanical factors. Gastrocnemius muscles from mice were assembled and ex vivo passive stretching was performed before or after injury. After injury, the muscle significantly decreased mechanical strength. Ultrasonic images were obtained by HFU at different deformations to scan in cross and longitudinal orientations of muscle. The ultrasonography was quantified by echogenicity and Nakagami parameters (NP) for structural evaluation and correlated with histological results. The injured muscle at its original length exhibited decreased echogenicity and NP from HFU images. Cross-sectional ultrasonography revealed a loss of correlation between NP and passive muscle stretching that suggested a special scatterer pattern in the cross section of injured muscle. The independence of NP during passive stretching of injured muscle was confirmed by histological findings in ruptured collagen fibers, decreased muscle density, and increased intermuscular fiber space. Thus, HFU analysis of NP in cross section represents muscle injury that may benefit the clinical diagnosis.
    Preview · Article · Jan 2016

  • No preview · Article · Jan 2016 · IEEE Journal of Selected Topics in Quantum Electronics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-resolution quantitative imaging of cerebral oxygen metabolism in mice is crucial for understanding brain functions and formulating new strategies to treat neurological disorders, but remains a challenge. Here, we report on our newly developed ultrasound-aided multi-parametric photoacoustic microscopy (PAM), which enables simultaneous quantification of the total concentration of hemoglobin (CHb), the oxygen saturation of hemoglobin (sO2), and cerebral blood flow (CBF) at the microscopic level and through the intact mouse skull. The three-dimensional skull and vascular anatomies delineated by the dual-contrast (i.e., ultrasonic and photoacoustic) system provide important guidance for dynamically focused contour scan and vessel orientation-dependent correction of CBF, respectively. Moreover, bi-directional raster scan allows determining the direction of blood flow in individual vessels. Capable of imaging all three hemodynamic parameters at the same spatiotemporal scale, our ultrasound-aided PAM fills a critical gap in preclinical neuroimaging and lays the foundation for high-resolution mapping of the cerebral metabolic rate of oxygen (CMRO2) - a quantitative index of cerebral oxygen metabolism. This technical innovation is expected to shed new light on the mechanism and treatment of a broad spectrum of neurological disorders, including Alzheimer's disease and ischemic stroke.
    Preview · Article · Dec 2015 · Scientific Reports
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atherosclerotic coronary artery disease (CAD) is the number one cause of death worldwide. The majority of CAD-induced deaths are due to the rupture of vulnerable plaques. Accurate assessment of plaques is crucial to optimize treatment and prevent death in patients with CAD. Current diagnostic techniques are often limited by either spatial resolution or penetration depth. Several studies have proved that the combined use of optical and ultrasonic imaging techniques increase diagnostic accuracy of vulnerable plaques. Here, we introduce an ultrafast optical-ultrasonic dual-modality imaging system and flexible miniaturized catheter, which enables the translation of this technology into clinical practice. This system can perform simultaneous optical coherence tomography (OCT)-intravascular ultrasound (IVUS) imaging at 72 frames per second safely in vivo, i.e., visualizing a 72 mm-long artery in 4 seconds. Results obtained in atherosclerotic rabbits in vivo and human coronary artery segments show that this ultrafast technique can rapidly provide volumetric mapping of plaques and clearly identify vulnerable plaques. By providing ultrafast imaging of arteries with high resolution and deep penetration depth simultaneously, this hybrid IVUS-OCT technology opens new and safe opportunities to evaluate in real-time the risk posed by plaques, detect vulnerable plaques, and optimize treatment decisions.
    Preview · Article · Dec 2015 · Scientific Reports
  • [Show abstract] [Hide abstract]
    ABSTRACT: Image-guided core needle biopsy is the current gold standard for breast cancer diagnosis. Microcalcifications, an important radiographic finding on mammography suggestive of early breast cancer such as ductal carcinoma in situ, are usually biopsied under stereotactic guidance. This procedure, however, is uncomfortable for patients and requires the use of ionizing radiation. It would be preferable to biopsy microcalcifications under ultrasound guidance since it is a faster procedure, more comfortable for the patient, and requires no radiation. However, microcalcifications cannot reliably be detected with the current standard ultrasound imaging systems. This study is motivated by the clinical need for real-time high-resolution ultrasound imaging of microcalcifications, so that biopsies can be accurately performed under ultrasound guidance. We have investigated how high-frequency ultrasound imaging can enable visualization of microstructures in ex vivo breast tissue biopsy samples. We generated B-mode images of breast tissue and applied the Nakagami filtering technique to help refine image output so that microcalcifications could be better assessed during ultrasound-guided core biopsies. We describe the preliminary clinical results of high-frequency ultrasound imaging of ex vivo breast biopsy tissue with microcalcifications and without Nakagami filtering and the correlation of these images with the pathology examination by hematoxylin and eosin stain and whole slide digital scanning.
    No preview · Article · Dec 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cell separation and sorting techniques have been employed biomedical applications such as cancer diagnosis and cell gene expression analysis. The capability to accurately measure ultrasonic scattering properties from cells is crucial in making an ultrasonic cell sorter a reality if ultrasound scattering is to be used as the sensing mechanism as well. To assess the performance of sensing and identifying live single cells with high-frequency ultrasound, an 86-MHz lithium niobate pressfocused single-element acoustic transducer was used in a highfrequency ultrasound scattering measurement system that was custom designed and developed for minimizing noise and allowing better mobility. Peak-to-peak echo amplitude, integrated backscatter (IB) coefficient, spectral parameters including spectral slope and intercept, and midband fit from spectral analysis of the backscattered echoes were measured and calculated from a live single cell of two different types on an agar surface: leukemia cells (K562 cells) and red blood cells (RBCs). The amplitudes of echo signals from K562 cells and RBCs were 48.25 ± 11.98 mV<;sub>pp<;/sub> and 56.97 ± 7.53 mV<;sub>pp<;/sub>, respectively. The IB coefficient was -89.39 ± 2.44 dB for K562 cells and -89.00 ± 1.19 dB for RBCs. The spectral slope and intercept were 0.30 ± 0.19 dB/MHz and -56.07 ± 17.17 dB, respectively, for K562 cells and 0.78 ± 0.092 dB/MHz and -98.18 ± 8.80 dB, respectively, for RBCs. Midband fits of K562 cells and RBCs were -31.02 ± 3.04 dB and -33.51 ± 1.55 dB, respectively. Acoustic cellular discrimination via these parameters was tested by Student's t-test. Their values, except for the IB value, showed statistically significant difference (p <; 0.001). This paper reports for the first time that ultrasonic scattering measurements can be made on a live single cell with a highly focused high-frequency ultrasound microbeam at 86 MH- . These results also suggest the feasibility of ultrasonic scattering as a sensing mechanism in the development of ultrasonic cell sorters.
    No preview · Article · Nov 2015 · IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its −6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers.
    Full-text · Article · Oct 2015 · Applied Physics Letters
  • Teng Ma · Bill Zhou · Tzung K Hsiai · K Kirk Shung
    [Show abstract] [Hide abstract]
    ABSTRACT: Catheter-based intravascular imaging modalities are being developed to visualize pathologies in coronary arteries, such as high-risk vulnerable atherosclerotic plaques known as thin-cap fibroatheroma, to guide therapeutic strategy at preventing heart attacks. Mounting evidences have shown three distinctive histopathological features-the presence of a thin fibrous cap, a lipid-rich necrotic core, and numerous infiltrating macrophages-are key markers of increased vulnerability in atherosclerotic plaques. To visualize these changes, the majority of catheter-based imaging modalities used intravascular ultrasound (IVUS) as the technical foundation and integrated emerging intravascular imaging techniques to enhance the characterization of vulnerable plaques. However, no current imaging technology is the unequivocal "gold standard" for the diagnosis of vulnerable atherosclerotic plaques. Each intravascular imaging technology possesses its own unique features that yield valuable information although encumbered by inherent limitations not seen in other modalities. In this context, the aim of this review is to discuss current scientific innovations, technical challenges, and prospective strategies in the development of IVUS-based multi-modality intravascular imaging systems aimed at assessing atherosclerotic plaque vulnerability.
    No preview · Article · Sep 2015 · Ultrasonic Imaging
  • Min Gon Kim · Sangpil Yoon · Hyung Ham Kim · K Kirk Shung
    [Show abstract] [Hide abstract]
    ABSTRACT: An approach for the design of an impedance matching network (IMN) for high frequency ultrasonic transducers with large apertures based on impedance analysis for cellular applications is presented in this paper. The main objectives were to maximize energy transmission from the excitation source to the ultrasonic transducers for cell manipulation and to achieve low input parameters for the safe operation of an ultrasonic transducer because the piezoelectric material in high frequency ultrasonic transducers is prone to breakage due to its being extremely thin. Two ultrasonic transducers, which were made of lithium niobate single crystal with the thickness of 15μm, having apertures of 4.3mm (fnumber=1.23) and 2.6mm (fnumber=0.75) were tested. L-type IMN was selected for high sensitivity and compact design of the ultrasonic transducers. The target center frequency was chosen as the frequency where the electrical admittance (|Y|) and phase angle (θz) from impedance analysis was maximal and zero, respectively. The reference center frequency and reference echo magnitude were selected as the center frequency and echo magnitude, measured by pulse-echo testing, of the ultrasonic transducer without IMN. Initial component values and topology of IMN were determined using the Smith chart, and pulse-echo testing was analyzed to verify the performance of the ultrasonic transducers with and without IMN. After several iterations between changing component values and topology of IMN, and pulse-echo measurement of the ultrasonic transducer with IMN, optimized component values and topology of IMN were chosen when the measured center frequency from pulse-echo testing was comparable to the target frequency, and the measured echo magnitude was at least 30% larger than the reference echo magnitude. Performance of an ultrasonic transducer with and without IMN was tested by observing a tangible dent on the surface of a plastic petridish and single cell response after an acoustic pulse was applied on a target cell.
    No preview · Article · Sep 2015 · Ultrasonics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Intravascular photoacoustic imaging at 1.7 μm spectral band has shown promising capabilities for lipid-rich vulnerable atherosclerotic plaque detection. In this work, we report a high speed catheter-based integrated intravascular photoacoustic/intravascular ultrasound (IVPA/IVUS) imaging system with a 500 Hz optical parametric oscillator laser at 1725 nm. A lipid-mimicking phantom and atherosclerotic rabbit abdominal aorta were imaged at 1 frame per second, which is two orders of magnitude faster than previously reported in IVPA imaging with the same wavelength. Clear photoacoustic signals by the absorption of lipid rich deposition demonstrated the ability of the system for high speed vulnerable atherosclerotic plaques detection.
    No preview · Article · Aug 2015 · Applied Physics Letters
  • Source

    Full-text · Dataset · Aug 2015
  • Source

    Full-text · Dataset · Aug 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate a jitter noise reduction technique for acoustic radiation force impulse microscopy via photoacoustic detection (PA-ARFI), which promises to be capable of measuring cell mechanics. To reduce the jitter noise induced by Q-switched pulsed laser operated at high repetition frequency, photoacoustic signals from the surface of an ultrasound transducer are aligned by cross-correlation and peak-to-peak detection, respectively. Each method is then employed to measure the displacements of a target sample in an agar phantom and a breast cancer cell due to ARFI application, followed by the quantitative comparison between their performances. The suggested methods for PA-ARFI significantly reduce jitter noises, thus allowing us to measure displacements of a target cell due to ARFI application by less than 3 μm.
    No preview · Article · Jul 2015 · Optics Express
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular matrix proteins such as fibronectin (FNT) play crucial roles in cell proliferation, adhesion, and migration. For better understanding of these associated cellular activities, various microscopic manipulation tools have been used to study their intracellular signaling pathways. Recently, it has appeared that acoustic tweezers may possess similar capabilities in the study. Therefore, we here demonstrate that our newly developed acoustic tweezers with a high-frequency lithium niobate ultrasonic transducer have potentials to study intracellular calcium signaling by FNT-binding to human breast cancer cells (SKBR-3). It is found that intracellular calcium elevations in SKBR-3 cells, initially occurring on the microbead-contacted spot and then eventually spreading over the entire cell, are elicited by attaching an acoustically trapped FNT-coated microbead. Interestingly, they are suppressed by either extracellular calcium elimination or phospholipase C (PLC) inhibition. Hence, this suggests that our acoustic tweezers may serve as an alternative tool in the study of intracellular signaling by FNT-binding activities. Copyright © 2015 Elsevier B.V. All rights reserved.
    No preview · Article · Jun 2015 · Ultrasonics
  • [Show abstract] [Hide abstract]
    ABSTRACT: RE1-Silencing Transcription factor (REST) has a well-established role in regulating transcription of genes important for neuronal development. Its role in cancer, though significant, is less well understood. We show that REST downregulation in weakly invasive MCF-7 breast cancer cells converts them to a more invasive phenotype, while REST overexpression in highly invasive MDA-MB-231 cells suppresses invasiveness. Surprisingly, the mechanism responsible for these phenotypic changes does not depend directly on the transcriptional function of REST protein. Instead, it is driven by previously unstudied mid-size (30-200 nt) non-coding RNAs (ncRNAs) derived from the first exon of an alternatively spliced REST transcript: REST-003. We show that processing of REST-003 into ncRNAs is controlled by an uncharacterized serine/arginine repeat-related protein, SRRM3. SRRM3 expression may be under REST-mediated transcriptional control, as it increases following REST downregulation. The SRRM3-dependent regulation of REST-003 processing into ncRNAs has many similarities to recently described promoter-associated small RNA-like processes. Targeting ncRNAs that control invasiveness could lead to new therapeutic approaches to limit breast cancer metastasis.
    No preview · Article · Jun 2015 · Scientific Reports
  • Hung Cao · Bong Jin Kang · Chia-An Lee · K Kirk Shung · Tzung K Hsiai
    [Show abstract] [Hide abstract]
    ABSTRACT: Inadequate replacement of lost ventricular myocardium from myocardial infarction leads to heart failure. Investigating the regenerative capacity of mammalian hearts represents an emerging direction for tissue engineering and cellbased therapy. Recent advances in stem cells hold promise to restore cardiac functions. However, embryonic or induced pluripotent stem cell-derived cardiomyocytes lack functional phenotypes of the native myocardium, and transplanted tissues are not fully integrated for synchronized electrical and mechanical coupling with the host. In this context, this review highlights the mechanical and electrical strategies to promote cardiomyocyte maturation and integration, and to assess the functional phenotypes of regenerating myocardium. Simultaneous microelectrocardiogram and high-frequency ultrasound techniques will also be introduced to assess electrical and mechanical coupling for small animal models of heart regeneration.
    No preview · Article · May 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: A method is proposed to suppress sidelobe level for near-field beamforming in ultrasound array imaging. An optimization problem is established, and the second-order cone algorithm is used to solve the problem to obtain the weight vector based on the near-field response vector of a transducer array. The weight vector calculation results show that the proposed method can be used to suppress the sidelobe level of the near-field beam pattern of a transducer array. Ultrasound images following the application of weight vector to the array of a wire phantom are obtained by simulation with the Field II program, and the images of a wire phantom and anechoic sphere phantom are obtained experimentally with a 64-element 26 MHz linear phased array. The experimental and simulation results agree well and show that the proposed method can achieve a much lower sidelobe level than the conventional delay and sum beamforming method. The wire phantom image is demonstrated to focus much better and the contrast of the anechoic sphere phantom image improved by applying the proposed beamforming method.
    No preview · Article · May 2015 · The Journal of the Acoustical Society of America
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.
    Full-text · Article · May 2015 · Optics Letters

Publication Stats

5k Citations
656.15 Total Impact Points

Institutions

  • 2015
    • Daegu Gyeongbuk Institute of Science and Technology
      • Department of Information and Communication Engineering
      Daikyū, Daegu, South Korea
  • 2004-2015
    • University of California, Los Angeles
      • Department of Bioengineering
      Los Ángeles, California, United States
  • 2003-2015
    • University of Southern California
      • • Department of Biomedical Engineering
      • • Department of Ophthalmology
      Los Ángeles, California, United States
  • 2011
    • The University of Hong Kong
      Hong Kong, Hong Kong
  • 2010-2011
    • Taipei Veterans General Hospital
      T’ai-pei, Taipei, Taiwan
    • Sogang University
      Sŏul, Seoul, South Korea
  • 2009
    • Oregon Health and Science University
      • Department of Diagnostic Radiology
      Portland, Oregon, United States
  • 2008
    • Washington University in St. Louis
      • Department of Biomedical Engineering
      San Luis, Missouri, United States
  • 2007
    • National Taiwan University
      • Institute of Applied Mechanics
      T’ai-pei, Taipei, Taiwan
  • 2006
    • American Institute of Ultrasound in Medicine
      LUL, Mississippi, United States
  • 1992-2006
    • Pennsylvania State University
      • • Materials Research Institute
      • • Department of Bioengineering
      University Park, Maryland, United States
  • 1999-2001
    • William Penn University
      University Park, Florida, United States