Ryan Jankord

University of Cincinnati, Cincinnati, Ohio, United States

Are you Ryan Jankord?

Claim your profile

Publications (23)89.27 Total impact

  • [Show abstract] [Hide abstract] ABSTRACT: Investigations into the use of transcranial direct current stimulation (tDCS) in relieving symptoms of neurological disorders and enhancing cognitive or motor performance have exhibited promising results. However, the mechanisms by which tDCS effects brain function remain under scrutiny. We have demonstrated that in vivo tDCS in rats produced a lasting effect on hippocampal synaptic plasticity, as measured using extracellular recordings. Ex vivo preparations of hippocampal slices from rats that have been subjected to tDCS of 0.10 or 0.25 mA for 30 min followed by 30 min of recovery time displayed a robust twofold enhancement in long-term potentiation (LTP) induction accompanied by a 30% increase in paired-pulse facilitation (PPF). The magnitude of the LTP effect was greater with 0.25 mA compared with 0.10 mA stimulations, suggesting a dose-dependent relationship between tDCS intensity and its effect on synaptic plasticity. To test the persistence of these observed effects, animals were stimulated in vivo for 30 min at 0.25 mA and then allowed to return to theirhomecage for 24 h. Observation of the enhanced LTP induction, but not the enhanced PPF, continued 24 h after completion of 0.25 mA of tDCS. Addition of the NMDA blocker AP-5 abolished LTP in both control and stimulated rats but maintained the PPF enhancement in stimulated rats. The observation of enhanced LTP and PPF after tDCS demonstrates that non-invasive electrical stimulation is capable of modifying synaptic plasticity.
    No preview · Article · Sep 2015 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • [Show abstract] [Hide abstract] ABSTRACT: The effects of chronic stress on learning are highly variable across individuals. This variability stems from gene-environment interactions. However, the mechanisms by which stress affects genetic predictors of learning are unclear. Thus, we aim to determine whether the genetic pathways that predict spatial memory performance are altered by previous exposure to chronic stress. Sixty-two BXD recombinant inbred strains of mice, as well as parent strains C57BL/6J and DBA/2J, were randomly assigned as behavioral control or to a chronic variable stress paradigm and then underwent behavioral testing to assess spatial memory and learning performance using the Morris water maze. Quantitative trait loci (QTL) mapping was completed for average escape latency times for both control and stress animals. Loci on chromosomes 5 and 10 were found in both control and stress environmental populations; eight additional loci were found to be unique to either the control or stress environment. In sum, results indicate that certain genetic loci predict spatial memory performance regardless of prior stress exposure, while exposure to stress also reveals unique genetic predictors of training during the memory task. Thus, we find that genetic predictors contributing to spatial learning and memory are susceptible to the presence of chronic stress. Copyright © 2015. Published by Elsevier Inc.
    No preview · Article · Jun 2015 · Physiology & Behavior
  • [Show abstract] [Hide abstract] ABSTRACT: Glucocorticoids act rapidly at the paraventricular nucleus (PVN) to inhibit stress-excitatory neurons and limit excessive glucocorticoid secretion. The signaling mechanism underlying rapid feedback inhibition remains to be determined The present study was designed to test the hypothesis that the canonical glucocorticoid receptors (GR) is required for appropriate hypothalamic-pituitary-adrenal (HPA) axis regulation. Local PVN GR knockdown was achieved by breeding homozygous floxed GR mice with Sim1-cre recombinase transgenic mice. This genetic approach created mice with a knockdown of GR primarily confined to hypothalamic cell groups including the PVN, sparing GR expression in other HPA axis limbic regulatory regions and the pituitary. There were no differences in circadian nadir and peak corticosterone concentrations between male PVN GR KD mice and male littermate controls. However, reduction of PVN GR increased ACTH and corticosterone responses to acute, but not chronic stress, indicating that PVN GR is critical for limiting neuroendocrine responses to acute stress in males. Loss of PVN GR induced an opposite neuroendocrine phenotype in females, characterized by increased circadian nadir corticosterone levels and suppressed ACTH responses to acute restraint stress, without a concomitant change in corticosterone responses under acute or chronic stress conditions. PVN GR deletion had no effect on depression-like behavior in either sex in the forced swim test. Overall, these findings reveal pronounced sex differences in the PVN GR dependence of acute stress feedback regulation of HPA axis function. In addition, these data further indicate that glucocorticoid control of HPA axis responses following chronic stress operates via a PVN-independent mechanism.
    No preview · Article · Jun 2015 · Endocrinology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: An individual's genetic background affects their emotional behavior and response to stress. Although studies have been conducted to identify genetic predictors for emotional behavior or stress response, it remains unknown how prior stress history alters the interaction between an individual's genome and their emotional behavior. Therefore, the purpose of this study is to identify chromosomal regions that affect emotional behavior and are sensitive to stress exposure. We utilized the BXD behavioral genetics mouse model to identify chromosomal regions that predict fear learning and emotional behavior following exposure to a control or chronic stress environment. 62 BXD recombinant inbred strains and C57BL/6 and DBA/2 parental strains underwent behavioral testing including a classical fear conditioning paradigm and the elevated plus maze. Distinct quantitative trait loci (QTLs) were identified for emotional learning, anxiety and locomotion in control and chronic stress populations. Candidate genes, including those with already known functions in learning and stress were found to reside within the identified QTLs. Our data suggest that chronic stress history reveals novel genetic predictors of emotional behavior.
    Preview · Article · Oct 2014 · Frontiers in Behavioral Neuroscience
  • [Show abstract] [Hide abstract] ABSTRACT: Chronic stress induces presynaptic and postsynaptic modifications in the paraventricular nucleus of the hypothalamus that are consistent with enhanced excitatory hypothalamo-pituitary-adrenocortical (HPA) axis drive. The brain regions mediating these molecular modifications are not known. We hypothesized that chronic variable stress (CVS) tonically activates stress-excitatory regions that interact with the paraventricular nucleus of the hypothalamus, culminating in stress facilitation. In order to identify chronically activated brain regions, ΔFosB, a documented marker of tonic neuronal activation, was assessed in known stress regulatory limbic and brainstem sites. Four experimental groups were included: CVS, repeated restraint (RR) (control for HPA habituation), animals weight-matched (WM) to CVS animals (control for changes in circulating metabolic factors due to reduced weight gain), and non-handled controls. CVS, (but not RR or WM) induced adrenal hypertrophy, indicating that sustained HPA axis drive only occurred in the CVS group. CVS (but not RR or WM) selectively increased the number of FosB/ΔFosB nuclei in the nucleus of the solitary tract, posterior hypothalamic nucleus, and both the infralimbic and prelimbic divisions of the medial prefrontal cortex, indicating an involvement of these regions in chronic drive of the HPA axis. Increases in FosB/ΔFosB-immunoreactive cells were observed following both RR and CVS in the other regions (e.g. the dorsomedial hypothalamus), suggesting activation by both habituating and non-habituating stress conditions. The data suggest that unpredictable stress uniquely activates interconnected cortical, hypothalamic, and brainstem nuclei, potentially revealing the existence of a recruited circuitry mediating chronic drive of brain stress effector systems.
    No preview · Article · Jul 2012 · European Journal of Neuroscience
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Chronic stress is associated with dysregulation of energy homeostasis, but the link between the two is largely unknown. For most rodents, periods of chronic stress reduce weight gain. We hypothesized that these reductions in weight are an additional homeostatic challenge, contributing to the chronic stress syndrome. Experiment #1 examined cardiovascular responsivity following exposure to prolonged intermittent stress. We used radio-telemetry to monitor mean arterial pressure and heart rate in freely moving, conscious rats. Three groups of animals were tested: chronic variable stress (CVS), weight-matched (WM), and controls. Using this design, we can distinguish between effects due to stress and effects due to the changing body weight. WM, but not CVS, markedly reduced basal heart rate. Although an acute stress challenge elicited similar peak heart rate, WM expedited the recovery to baseline heart rate. The data suggest that CVS prevents the weight-induced attenuation of cardiovascular stress reactivity. Experiment #2 investigated hypothalamic-pituitary-adrenal axis and metabolic hormone reactivity to novel psychogenic stress. WM increased corticosterone area under the curve. CVS blunted plasma glucose, leptin, and insulin levels in response to restraint. Experiment #3 tested the effects of WM and CVS on PVN oxytocin and corticotrophin-releasing hormone mRNA expression. CVS increased, while WM reduced PVN CRH mRNA expression, whereas both CVS and WM reduced dorsal parvocellular PVN oxytocin mRNA. Overall, the data suggest that weight loss is unlikely to account for the deleterious effects of chronic stress on the organism, but in fact produces beneficial effects that are effectively absent or indeed, reversed in the face of chronic stress exposure.
    Full-text · Article · Mar 2011 · Physiology & Behavior
  • [Show abstract] [Hide abstract] ABSTRACT: Adolescent development is proposed to represent a time of increased susceptibility to stress. During adolescence, the brain demonstrates a high level of plasticity and can be positively or negatively affected by the environment. This study tests the hypothesis that adolescent development is a stage of enhanced vulnerability to chronic stress. Male Sprague-Dawley rats were exposed to our 14-d chronic variable stress (CVS) paradigm at three developmental stages: 1) early adolescence (35 d; age at initiation of CVS); 2) late adolescence (50 d); or 3) adulthood (80 d). We examined the effects of CVS on the following: 1) depression-like behavior; 2) somatic indices; 3) hypothalamic-pituitary-adrenal (HPA) axis activity; and 4) neuropeptide expression in the hypothalamus. Results show, regardless of age, CVS exposure: 1) decreased body weight; 2) increased adrenal size; 3) decreased fat weight; and 4) increased HPA response to stress. The somatic effects of CVS were exaggerated in late adolescent animals, and late adolescent animals were the only group where CVS decreased oxytocin expression and increased basal corticosterone. In response to CVS, adult animals increased immobility during the forced-swim test while early and late adolescent animals were resistant to the effects of chronic stress on depression-like behavior. Results show that adolescent animals were protected from the effect of chronic stress on depression-like behavior while late adolescent animals were more susceptible to the somatic, HPA axis, and neuropeptide effects of chronic stress. Thus, adolescent development is a unique window of vulnerabilities and protections to the effects of chronic stress.
    No preview · Article · Feb 2011 · Endocrinology
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: The nucleus of the solitary tract (NTS) is a critical integrative site for coordination of autonomic and endocrine stress responses. Stress-excitatory signals from the NTS are communicated by both catecholaminergic [norepinephrine (NE), epinephrine (E)] and noncatecholaminergic [e.g., glucagon-like peptide-1 (GLP-1)] neurons. Recent studies suggest that outputs of the NE/E and GLP-1 neurons of the NTS are selectively engaged during acute stress. This study was designed to test mechanisms of chronic stress integration in the paraventricular nucleus, focusing on the role of glucocorticoids. Our data indicate that chronic variable stress (CVS) causes downregulation of preproglucagon (GLP-1 precursor) mRNA in the NTS and reduction of GLP-1 innervation to the paraventricular nucleus of the hypothalamus. Glucocorticoids were necessary for preproglucagon (PPG) reduction in CVS animals and were sufficient to lower PPG mRNA in otherwise unstressed animals. The data are consistent with a glucocorticoid-mediated withdrawal of GLP-1 in key stress circuits. In contrast, expression of tyrosine hydroxylase mRNA, the rate-limiting enzyme in catecholamine synthesis, was increased by stress in a glucocorticoid-independent manner. These suggest differential roles of ascending catecholamine and GLP-1 systems in chronic stress, with withdrawal of GLP-1 involved in stress adaptation and enhanced NE/E capacity responsible for facilitation of responses to novel stress experiences.
    Full-text · Article · Nov 2010 · The Journal of Neuroscience : The Official Journal of the Society for Neuroscience
  • [Show abstract] [Hide abstract] ABSTRACT: Stress preferentially increases the consumption of high fat foods in women, suggesting the interaction of these two factors may disproportionately predispose women toward excess weight gain. In the present study, female rats were exposed to a chronic high fat or chow diet and were exposed to 4weeks of chronic variable stress (CVS) or served as home cage controls. Control females exposed to a high fat diet displayed many symptoms of the metabolic syndrome including increased body weight gain, total and visceral adiposity and insulin and leptin concentrations relative to all groups. However, CVS-high fat, CVS chow and control chow groups had similar body weight gain and caloric efficiency. This finding suggests that CVS increases energy expenditure much more in females exposed to a high fat diet relative to those fed a standard chow diet. The CVS-high fat group had increased adiposity and increased circulating leptin and insulin concentrations, despite the fact that their body weight did not differ from the controls. These results underscore the importance of assessing the degree of adiposity, rather than body weight alone, as an index of overall metabolic health. Overall, the data indicate that in female rats, chronic stress prevents high fat diet related increases in body weight, but does not prevent high fat diet induced increases in adiposity when compared to chow-fed females.
    No preview · Article · Oct 2010 · Physiology & Behavior
  • [Show abstract] [Hide abstract] ABSTRACT: Vasopressin (VP) plays an important role in hypothalamo-pituitary-adrenal (HPA) axis regulation and in stress-related disorders. Our previous studies confirmed the role of VP in acute situations, where VP-deficient Brattleboro rats had less depression-like behaviour compared to animals that express VP. In this study, we test the hypothesis that VP-deficient rats are more resistant to the development of chronic HPA axis hyperactivity and depression-like symptoms after chronic unpredictable stress (CUS). Male VP-deficient Brattleboro rats were compared to their heterozygous littermates (controls). CUS consisted of different mild stimuli for 5 weeks. Elevated plus maze and forced swim test were used for behavioural characterization, while organs and blood for HPA axis parameters were collected at the end of the experiment. In controls, CUS resulted in the development of chronic stress state characterized by typical somatic (body weight reduction, thymus involution) and endocrine changes (resting plasma ACTH and corticosterone elevation and POMC mRNA elevation in anterior lobe of the pituitary). Floating time in the forced swim test was enhanced together with reduced open arm entries on elevated plus maze and a reduction in daily food intake. Unexpectedly, the lack of VP did not alter the effect of CUS on the somatic and behavioural measures, but only prevented CUS-induced corticosterone changes. In conclusion, lifelong VP-deficiency has a positive effect on corticosterone elevation following CUS but does not affect the behavioural consequences of CUS. It is likely that the interplay of several related factors, rather than an alteration in a single neuropeptide, modulates behaviour and disease pathogenesis.
    No preview · Article · Oct 2010 · Brain research bulletin
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: An emerging literature attests to the ability of psychological stress to alter the inflammatory cytokine environment of the body. While the ability of stress to cause cytokine release is well established, the neural pathways involved in this control have yet to be identified. This study tests the hypothesis that IL-6 neurons of the hypothalamo-neurohypophyseal system (HNS), a neural pathway proposed to secrete IL-6 into the circulation, are activated in response to psychological stress. Colocalization studies confirm robust expression of IL-6 in cell bodies and fibers of vasopressin (but not oxytocin) neurons of the paraventricular (PVN) and supraoptic nucleus (SON) of the rat hypothalamus. In response to restraint, there was a greater increase in c-Fos expression in SON IL-6-positive (IL-6+) neurons. In addition, both psychogenic (restraint) or systemic stress (hypoxia) lead to phosphorylated ERK induction only in IL-6+ magnocellular neurons, indicating selective activation of the MAPK signaling pathway in the IL-6 subset of magnocellular neurons. Finally, restraint upregulated IL-6 mRNA expression in both the PVN and SON, which was accompanied by a four-fold increase in circulating IL-6. The data indicate that noninflammatory stressors selectively activate IL-6 magnocellular neurons, upregulate IL-6 gene expression in the PVN and SON, and increase plasma IL-6. In summary, results show that IL-6 neurons of the HNS are a recruited component of the response to psychological stress.
    Full-text · Article · Jul 2010 · AJP Regulatory Integrative and Comparative Physiology
  • No preview · Article · Jun 2010 · Appetite
  • R. Jankord · R. Zhang · J. P. Herman
    No preview · Article · Jul 2009 · Brain Behavior and Immunity
  • [Show abstract] [Hide abstract] ABSTRACT: Adaptation to a constantly changing environment is fundamental to every living organism. The hypothalamic-pituitary-adrenocortical (HPA) axis is a key component of the adaptation process. The present study tests the hypothesis that vasopressin (AVP) is required for the HPA response to acute stimuli. To accomplish this, naturally AVP-deficient Brattleboro rats were exposed to a wide range of stimuli and their HPA response was compared with heterozygous littermates. The circadian rhythmicity of plasma ACTH and corticosterone was not different between the two genotypes. The ACTH and corticosterone response to volume load, restraint or aggressive attack were decreased in AVP-deficient rats. The stress-induced increase in ACTH, but not corticosterone, was significantly impaired in AVP-deficient animals after novelty, elevated plus-maze, forced swim, hypoglycaemia, ulcerogenic cold immobilisation, lipopolysaccharide, hypertonic saline and egg white injection. The HPA response to social avoidance, ether inhalation and footshock was not different between the genotypes. In vitro, the hypophysis of AVP-deficient animals showed a reduction in stimulated ACTH production and their adrenal glands were hyporeactive to ACTH. A dissociation between the ACTH and corticosterone response was observed in several experiments and could not be explained by an earlier ACTH peak or enhanced adrenal sensitivity, suggesting the existence of paraadenohypophyseal neuroendocrine regulators. Loss of AVP affected the HPA response to a wide variety of stressors. Interestingly, the contribution of AVP to the HPA response was not specific for, nor limited to, a known stressor category. Thus, there is a context-specific requirement for AVP in stress-induced activation of the HPA axis.
    No preview · Article · Jun 2009 · Journal of Endocrinology
  • [Show abstract] [Hide abstract] ABSTRACT: Exercise can activate the hypothalamo-pituitary-adrenocortical (HPA) axis, and regular exercise training can impact how the HPA axis responds to stress. The mechanism by which acute exercise induces HPA activity is unclear. Therefore, the purpose of this study was to test the hypothesis that nitric oxide modulates the neuroendocrine component of the HPA axis during exercise. Female Yucatan miniature swine were treated with N-nitro-l-arginine methyl ester (l-NAME) to test the effect of chronic nitric oxide synthase (NOS) inhibition on the ACTH response to exercise. In addition, we tested the effect of NOS inhibition on blood flow to tissues of the HPA axis and report the effects of handling and treadmill exercise on the plasma concentrations of ACTH and cortisol. Chronic NOS inhibition decreased plasma NO(x) levels by 44%, increased mean arterial blood pressure by 46%, and increased expression of neuronal NOS in carotid arteries. Vascular conductance was decreased in the frontal cortex, the hypothalamus, and the adrenal gland. Chronic NOS inhibition exaggerated the ACTH response to exercise. In contrast, chronic NOS inhibition decreased the ACTH response to restraint, suggesting that the role of NO in modulating HPA activity is stressor dependent. These results demonstrate that NOS activity modulates the response of the neuroendocrine component of the HPA axis during exercise stress.
    No preview · Article · Feb 2009 · AJP Regulatory Integrative and Comparative Physiology
  • Source
    Ryan Jankord · James P Herman
    [Show abstract] [Hide abstract] ABSTRACT: The hypothalamo-pituitary-adrenocortical (HPA) axis is responsible for initiation of glucocorticoid stress responses in all vertebrate animals. Activation of the axis is regulated by diverse afferent input to the hypothalamic paraventricular nucleus (PVN). This review discusses brain mechanisms subserving generation and inhibition of stress responses focusing on the contribution of the limbic system and highlighting recent conceptual advances regarding organization of stress response pathways in the brain. First, control of HPA axis responses to psychogenic stimuli is exerted by a complex neurocircuitry that involves oligosynaptic networks between limbic forebrain structures and the PVN. Second, individual stress-modulatory structures can have a heterogeneous impact on HPA axis responses, based on anatomical micro-organization and/or stimulus properties. Finally, HPA axis hyperactivity pursuant to chronic stress involves a substantial functional and perhaps anatomical reorganization of central stress-integrative circuits. Overall, the data suggest that individual brain regions do not merely function as monolithic activators or inhibitors of the HPA axis and that network approaches need be taken to fully understand the nature of the neuroendocrine stress response.
    Full-text · Article · Jan 2009 · Annals of the New York Academy of Sciences
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Eating and physical activity behaviors influence neuroendocrine output. The purpose of this study was to test, in an animal model of diet-induced cardiovascular disease, the effects of high-fat feeding and exercise training on hypothalamo-pituitary-adrenocortical (HPA) axis activity. We hypothesized that a high-fat diet would increase circulating free fatty acids (FFAs) and decrease the adrenocorticotropic hormone (ACTH) and cortisol response to an acute stressor. We also hypothesized that exercise training would reverse the high-fat diet-induced changes in FFAs and thereby restore the ACTH and cortisol response. Pigs were placed in 1 of 4 groups (normal diet, sedentary; normal diet, exercise training; high-fat diet, sedentary; high-fat diet, exercise training; n = 8/group). Animals were placed on their respective dietary and activity treatments for 16-20 weeks. After completion of the treatments animals were anesthetized and underwent surgical intubation. Blood samples were collected after surgery and the ACTH and cortisol response to surgery was determined and the circulating concentrations of FFAs, glucose, cholesterol, insulin, and IGF-1 were measured. Consistent with our hypothesis, high-fat feeding increased FFAs by 200% and decreased the ACTH stress response by 40%. In exercise-trained animals, the high-fat diet also increased FFA; however, the increase in FFA in exercise-trained pigs was accompanied by a 60% increase in the ACTH response. The divergent effect of high-fat feeding on ACTH response was not expected, as exercise training alone had no effect on the ACTH response. Results demonstrate a significant interaction between diet and exercise and their effect on the ACTH response. The divergent effects of high-fat diet could not be explained by changes in weight gain, blood glucose, insulin, or IGF-1, as these were altered by high-fat feeding, but unaffected by exercise training. Thus, the increase in FFA with high-fat feeding may explain the blunted ACTH response to an acute stressor in sedentary animals, but cannot explain the exaggerated response in exercise trained animals.
    Full-text · Article · Jul 2008 · Applied Physiology Nutrition and Metabolism
  • Source
    James P Herman · Jonathan Flak · Ryan Jankord
    [Show abstract] [Hide abstract] ABSTRACT: Proper integration and execution of the physiological stress response is essential for maintaining homoeostasis. Stress responses are controlled in large part by the paraventricular nucleus (PVN) of the hypothalamus, which contains three functionally distinct neural populations that modulate multiple stress effectors: (1) hypophysiotrophic PVN neurons that directly control the activity of the hypothalamic-pituitary-adrenocortical (HPA) axis; (2) magnocellular neurons and their secreted neurohypophysial peptides; and (3) brainstem and spinal cord projecting neurons that regulate autonomic function. Evidence for activation of PVN neurons during acute stress exposure demonstrates extensive involvement of all three effector systems. In addition, all PVN regions appear to participate in chronic stress responses. Within the hypophysiotrophic neurons, chronic stress leads to enhanced expression of secreted products, reduced expression of glucocorticoid receptor and GABA receptor subunits and enhanced glutamate receptor expression. In addition, there is evidence for chronic stress-induced morphological plasticity in these neurons, with chronic drive causing changes in cell size and altered GABAergic and glutamatergic innervation. The response of the magnocellular system varies with different chronic exposure paradigms, with changes in neurohypophysial peptide gene expression, peptide secretion and morphology seen primarily after intense stress exposure. The preautonomic cell groups are less well studied, but are likely to be associated with chronic stress-induced changes in cardiovascular function. Overall, the PVN is uniquely situated to coordinate responses of multiple stress effector systems in the face of prolonged stimulation, and likely plays a role in both adaptation and pathology associated with chronic stress.
    Full-text · Article · Jan 2008 · Progress in brain research
  • Source
    [Show abstract] [Hide abstract] ABSTRACT: Inflammation contributes to disease development, and the neuroimmunoendocrine interface is a potential site of action for inflammatory products like IL-6 to affect health. Although plasma IL-6 can stimulate the activity of the hypothalamo-pituitary-adrenocortical (HPA) axis, the precise role, if any, for IL-6 in the HPA response to nonimmunological stressors is unclear. The purpose of this study was to test the hypothesis that IL-6 in the stalk median eminence (SME) can be directly involved in stimulating ACTH secretion in response to acute stress in female swine. This study was undertaken as a result of finding IL-6 localized to the external zone of the SME next to the hypophyseal portal vessels. Results indicate that content of IL-6 in the SME decreases in response to acute stress along with an increase in nuclear phosphorylated signal transducer and activator of transcription-3 (pSTAT-3) in pituitary corticotrophs and a simultaneous increase in plasma concentrations of IL-6 and ACTH. Furthermore, we show that females concomitantly display greater SME content of IL-6 and greater HPA responsiveness to stress, thereby suggesting that IL-6 release from the SME is an integral factor contributing to enhanced stress responsiveness in females. Our results provide evidence for a direct link between IL-6 and ACTH release and reveal a sex difference in this relationship.
    Full-text · Article · Sep 2007 · Endocrinology
  • Ryan Jankord · JR Turk · VK Ganjam · MH Laughlin
    No preview · Article · Nov 2006 · Medicine & Science in Sports & Exercise