T. Di Iorio

ENEA, Roma, Latium, Italy

Are you T. Di Iorio?

Claim your profile

Publications (63)85.64 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: Long range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground based and airborne lidar measurements were deployed in the Western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Menorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agree very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from Western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the Westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (I) pure BB layer, (II) weakly dusty BB, (III) significant mixture of BB and dust transported from the trade wind region (IV) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at altitude above 5 km. The mixing corresponds to a 20–30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS AOD horizontal distribution during this episode over the Western Mediterranean sea shows that the Canadian fires contribution were as large as the direct northward dust outflow from Sahara.
    No preview · Article · Nov 2015 · Atmospheric Chemistry and Physics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies (e.g. Boyce et al 2010) suggest that global marine primary production is declining over the last century and it is expected to decrease again with global warming. Nevertheless, such a decline was not observed at high latitudes (Bélanger et al., 2013, Behrenfeld et al., 2006), for which on the contrary an increasing trend in primary production is expected as an answer to global warming. Another important parameter affecting Arctic primary production is sea ice (e.g. Arrigo et al., 2012). The decline in sea ice extent, coverage and thickness observed in the Arctic over the past decade, and its eventual disappearance during summer, is expected to promote increased primary production, both in situ and as areal average (Bélanger et al., 2013). The biogenic productivity and atmospheric particulate are correlated by dimethylsulfide (DMS) emission by phytoplankton. Once in the atmosphere, DMS is oxidized to produce H2SO4 and methanesulfonic acid (MSA). These oxidised sulfur compounds can act as precursor of cloud condensation nuclei or they can increase the size of particles on which they condense, increasing the particle’s hygroscopicity, in turn enhancing their CCN activity This study examines the relationship between MSA in the atmospheric particulate, sampled in two Arctic sites (Ny Ålesund, Svalbard islands 78.9°N, 11.9°E, and Thule, Greenland 76.5°N, 68.8°W) over the period 2010-2012, and satellite chlorophyll (Chl) and related primary productivity (PP) in the potential source areas located in the surrounding oceanic areas (Barents and Greenland Seas for Ny Ålesund, and Baffin Bay for Thule).
    Full-text · Conference Paper · Sep 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The SPectral IMager (SPIM) facility is a laboratory visible infrared spectrometer developed to support space borne observations of rocky bodies of the solar system. Currently, this laboratory setup is used to support the DAWN mission, which is in its journey towards the asteroid 1-Ceres, and to support the 2018 Exo-Mars mission in the spectral investigation of the Martian subsurface. The main part of this setup is an imaging spectrometer that is a spare of the DAWN visible infrared spectrometer. The spectrometer has been assembled and calibrated at Selex ES and then installed in the facility developed at the INAF-IAPS laboratory in Rome. The goal of SPIM is to collect data to build spectral libraries for the interpretation of the space borne and in situ hyperspectral measurements of planetary materials. Given its very high spatial resolution combined with the imaging capability, this instrument can also help in the detailed study of minerals and rocks. In this paper, the instrument setup is first described, and then a series of test measurements, aimed to the characterization of the main subsystems, are reported. In particular, laboratory tests have been performed concerning (i) the radiation sources, (ii) the reference targets, and (iii) linearity of detector response; the instrumental imaging artifacts have also been investigated.
    No preview · Article · Sep 2015 · Review of Scientific Instruments
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: New calculations of the relative optical air mass function are made over the 0°–87° range of apparent solar zenith angle θ, for various vertical profiles of background aerosol, diamond dust and thin cirrus cloud particle extinction coefficient in the Arctic and Antarctic atmospheres. The calculations were carried out by following the Tomasi and Petkov (2014) procedure, in which the above-mentioned vertical profiles derived from lidar observations were used as weighting functions. Different sets of lidar measurements were examined, recorded using: (i) the Koldewey-Aerosol-Raman Lidar (KARL) system (AWI, Germany) at Ny-Ålesund (Spitsbergen, Svalbard) in January, April, July and October 2013; (ii) the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite-based sensor over Barrow (Alaska), Eureka (Nunavut, Canada) and Sodankylä (northern Finland), and Neumayer III, Mario Zucchelli and Mirny coastal stations in Antarctica in the local summer months of the last two years; (iii) the National Institute of Optics (INO), National Council of Research (CNR) Antarctic lidar at Dome C on the Antarctic Plateau for a typical “diamond dust” case; and (iv) the KARL lidar at Ny-Ålesund and the University of Rome/National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) lidar at Thule (northwestern Greenland) for some cirrus cloud layers in the middle and upper troposphere. The relative optical air mass calculations are compared with those obtained by Tomasi and Petkov (2014) to define the seasonal changes produced by aerosol particles, diamond dust and cirrus clouds. The results indicate that the corresponding air mass functions generally decrease as angle θ increases with rates that are proportional to the increase in the pure aerosol, diamond dust and cirrus cloud particle optical thickness.
    Full-text · Article · Jul 2015 · Remote Sensing
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Forcing on the Mediterranean Climate (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental set-up also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modelling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to produce high level of atmospheric pollutants nor intense biomass burning events in the region. However, numerous mineral dust plumes were observed during the campaign with main sources located in Morocco, Algeria and Tunisia, leading to aerosol optical depth (AOD) values ranging between 0.2 to 0.6 (at 440 nm) over the western and central Mediterranean basins. Associated aerosol extinction values measured on-board the ATR-42 within the dust plume show local maxima reaching up to 150 Mm−1. Non negligible aerosol extinction (about 50 Mm−1) was also been observed within the Marine Boundary Layer (MBL). By combining ATR-42 extinction, absorption and scattering measurements, a complete optical closure has been made revealing excellent agreement with estimated optical properties. Associated calculations of the dust single scattering albedo (SSA) have been conducted, which show a moderate variability (from 0.90 to 1.00 at 530 nm). In parallel, active remote-sensing observations from the surface and onboard the F-20 aircraft suggest a complex vertical structure of particles and distinct aerosol layers with sea-salt and pollution located within the MBL, and mineral dust and/or aged north American smoke particles located above (up to 6–7 km in altitude). Aircraft and balloon-borne observations show particle size distributions characterized by large aerosols (> 10 μm in diameter) within dust plumes. In terms of shortwave (SW) direct forcing, in-situ surface and aircraft observations have been merged and used as inputs in 1-D radiative transfer codes for calculating the direct radiative forcing (DRF). Results show significant surface SW instantaneous forcing (up to −90 W m−2 at noon). Associated 3-D modeling studies from regional climate (RCM) and chemistry transport (CTM) models indicate a relatively good agreement for simulated AOD compared with measurements/observations from the AERONET/PHOTONS network and satellite data, especially for long-range dust transport. Calculations of the 3-D SW (clear-sky) surface DRF indicate an average of about −10 to −20 W m−2 (for the whole period) over the Mediterranean Sea together with maxima (−50 W m−2) over northern Africa. The top of the atmosphere (TOA) DRF is shown to be highly variable within the domain, due to moderate absorbing properties of dust and changes in the surface albedo. Indeed, 3-D simulations indicate negative forcing over the Mediterranean Sea and Europe and positive forcing over northern Africa.
    Full-text · Article · Jul 2015 · Atmospheric Chemistry and Physics
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Ma-Miss instrument (Mars Multispectral Imager for Subsurface Studies, Coradini et al. (2001)) is a Visible and Near Infrared miniaturized spectrometer that will observe the Martian subsurface in the 0.4-2.2 μm spectral range. The instrument will be entirely hosted within the Drill of the ExoMars-2018 Pasteur Rover: it will allow analyzing the borehole wall excavated by the Drill, at different depths, down to 2 m. The aim will be to investigate and characterize the mineralogy and stratigraphy of the shallow Martian subsurface. A series of spectroscopic measurements have been performed in order to characterize the spectral performances of the laboratory model of the instrument (breadboard). A set of six samples have been analyzed. Each sample (four volcanic rocks, a micritic limestone and a calcite) has been reduced in particulate form, ground, sieved and divided into nine different grain sizes in the range d<0.02÷0.8 mm. Spectroscopic measurements have been performed on all samples using two distinct experimental setup: (a) the Ma-Miss breadboard, and (b) the Spectro-Goniometer setup, both in use in the laboratory at INAF - IAPS. In a previous paper spectral parameters such as the continuum slope and the reflectance level of the spectra have been discussed (De Angelis et al., 2014). In this work we focus our discussion on absorption band parameters (position, depth, area, band slope and asymmetry). We analyzed/investigated the absorption features at 1 μm for the volcanic samples and at 1.4, 1.9 and 2.2 μm for the two carbonate samples. Band parameters have been retrieved from spectra measured with both experimental setup and then compared. The comparison shows that band parameters are mutually consistent: band centers (for carbonate samples) are similar within few percent, and band depth and area values (for carbonates) show consistent trends vs. grain size (decreasing towards coarser grains) for most of samples.
    No preview · Article · Jul 2015 · Planetary and Space Science
  • Source

    Full-text · Conference Paper · May 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Aerosol optical properties have been measured on the island of Lampedusa (35.5°N, 12.6°E) with seven-band multifilter rotating shadowband radiometers (MFRSRs) and a CE 318 Cimel sunphotometer (part of the AERONET network) since 1999. Four different MFRSRs have operated since 1999. The Cimel sunphotometer has been operational for a short period in 2000 and in 2003–2006 and 2010–present. Simultaneous determinations of the aerosol optical depth (AOD) from the two instruments were compared over a period of almost 4 years at several wavelengths between 415 and 870 nm. This is the first long-term comparison at a site strongly influenced by desert dust and marine aerosols and characterized by frequent cases of elevated AOD. The datasets show a good agreement, with MFRSR underestimating the Cimel AOD in cases with low Ångström exponent; the underestimate decreases for increasing wavelength and increases with AOD. This underestimate is attributed to the effect of aerosol forward scattering on the relatively wide field of view of the MFRSR. An empirical correction of the MFRSR data was implemented. After correction, the mean bias (MB) between MFRSR and Cimel simultaneous AOD de-terminations is always smaller than 0.004, and the root mean square difference is ≤0.031 at all wavelengths. The MB between MFRSR and Cimel monthly averages (for months with at least 20 days with AOD determinations) is 0.0052. Thus, by combining the MFRSR and Cimel observations, an integrated long-term series is obtained, covering the period 1999–present, with almost continuous measurements since early 2002. The long-term data show a small (nonstatistically significant) decreasing trend over the period 2002–2013, in agreement with independent observations in the Mediterranean. The integrated 1559-128X/15/102725-13$15.00/0
    Full-text · Article · May 2015 · Applied Optics
  • [Show abstract] [Hide abstract]
    ABSTRACT: The future ExoMars rover mission (ESA/Roscosmos), to be launched in 2018, will investigate the habitability of the Martian surface and near subsurface, and search for traces of past life in the form of textural biosignatures and organic molecules. In support of this mission, a selection of relevant Mars analogue materials has been characterised and stored in the International Space Analogue Rockstore (ISAR), hosted in Orléans, France. Two ISAR samples were analysed by prototypes of the ExoMars rover instruments used for petrographic study. The objective was to determine whether a full interpretation of the rocks could be achieved on the basis of the data obtained by the ExoMars visible-IR imager and spectrometer (MicrOmega), the close-up imager (CLUPI), the drill infrared spectrometer (Ma_Miss) and the Raman spectrometer (RLS), first separately then in their entirety. In order to not influence the initial instrumental interpretation, the samples were sent to the different teams without any additional information. This first step was called the “Blind Test” phase. The data obtained by the instruments were then complemented with photography of the relevant outcrops (as would be available during the ExoMars mission) before being presented to two geologists tasked with the interpretation. The context data and photography of the outcrops and of the samples were sufficient for the geologists to identify the rocks. This initial identification was crucial for the subsequent, iterative interpretation of the spectroscopic data. The data from the different spectrometers was, thus, cross-calibrated against the photographic interpretations and against each other. In this way, important mineralogical details, such as evidence of aqueous alteration of the rocks, provided relevant information concerning potential habitable conditions. The final conclusion from this test is that, when processed together, the ExoMars payload instruments produce complementary data allowing reliable interpretation of the geological context and potential for habitable environments. This background information is fundamental for the analysis and interpretation of organics in the processed Martian rocks.
    No preview · Article · Apr 2015 · Planetary and Space Science
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Mediterranean basin is characterized by large concentrations of aerosols from both natural and anthropogenic sources. These aerosols change the optical properties of the atmosphere, therefore affecting tropospheric photochemistry through the photolytic rates. Two simulations of the atmospheric composition at basin-scale have been performed with the CHIMERE chemistry-transport model for the period from 1 June to 15 July 2013 covered by the ADRIMED campaign, a campaign of intense measurements in the western Mediterranean basin. One simulation takes into account the radiative effect of the aerosols on photochemistry, the other one does not. These simulations are compared to satellite and ground-based measurements, with a particular focus on the area of Lampedusa. Values of the Aerosol Optical Depth (AOD) are obtained from the MODIS instrument on the AQUA and TERRA satellites as well as from stations in the AERONET network and from the MFRSR sun photometer deployed at Lampedusa. Additional measurements from instruments deployed at Lampedusa either permanently or exceptionnally are used for other variables: MFRSR sun photometer for AOD, diode array spectrometer for actinic fluxes, LIDAR for the aerosol backscatter, sequential sampler for speciation of aerosol and Brewer spectrophotometer for the total ozone column. It is shown that CHIMERE has a significant ability to reproduce observed peaks in the AOD, which in Lampedusa are mainly due to dust outbreaks during the ADRIMED period, and that taking into account the radiative effect of the aerosols in CHIMERE improves considerably the ability of the model to reproduce the observed day-to-day variations of J(O1D) and J(NO2). While in the case of J(O1D) other variation factors such as the stratospheric ozone column are very important in representing correctly the day-to-day variations, the day-to-day variations of J(NO2) are captured almost completely by the model when the optical effects of the aerosols are taken into account. Finally, it is shown that the inclusion of the direct radiative effect of the aerosols in the CHIMERE model leads to reduced J(O1D) and J(NO2) values over all the simulation domain, which ranges from a few percents over continental Europe and the northeast Atlantic Ocean to about 20% close to and downwind from saharan dust sources. The effect on the modelled ozone concentration is twofold, with the effect of aerosols leading to reduced ozone concentrations over the Mediterranean Sea and continental Europe, close to the sources of NOx, and on the contrary to increased ozone concentrations over remote areas such the Sahara and the tropical Atlantic Ocean.
    No preview · Article · Mar 2015 · Atmospheric Chemistry and Physics
  • [Show abstract] [Hide abstract]
    ABSTRACT: Desert dust interacts with shortwave (SW) and longwave (LW) radiation, influencing the Earth radiation budget and the atmospheric vertical structure. Uncertainties on the dust role are large in the LW spectral range, where few measurements are available and the dust optical properties are not well constrained. The first airborne measurements of LW irradiance vertical profiles over the Mediterranean were carried out during the Ground-based and Airborne Measurements of Aerosol Radiative Forcing (GAMARF) campaign, which took place in spring 2008 at the island of Lampedusa. The experiment was aimed at estimating the vertical profiles of the SW and LW aerosol direct radiative forcing (ADRF) and heating rates (AHR), taking advantage of vertically resolved measurements of irradiances, meteorological parameters and aerosol microphysical and optical properties. Two cases, characterized respectively by the presence of a homogeneous dust layer (3 May, with aerosol optical depth, AOD, at 500 nm of 0.59), and by a low aerosol burden (5 May, with AOD of 0.14), are discussed. A radiative transfer model was initialized with the measured vertical profiles and with different aerosol properties, derived from measurements, or from the literature. The simulation of the irradiance vertical profiles, in particular, provide the opportunity to constrain model-derived estimates of the AHR. The measured SW and LW irradiances were reproduced when the model was initialized with the measured aerosol size distributions and refractive indices. For the dust case, the instantaneous (solar zenith angle, SZA, of 55.1°) LW-to-SW ADRF ratio was 23% at the surface and 11% at the top of the atmosphere (TOA), with a more significant LW contribution on a daily basis (52% at the surface and 26% at TOA), indicating a relevant reduction of the SW radiative effects. The AHR profiles followed the aerosol extinction profile, with comparable peaks in the SW (0.72±0.11 Kday-1) and in the LW (-0.52±0.12 Kday-1) for the considered SZA. On a daily basis, the absolute value of the heating rate was larger in the LW than in the SW, producing a net cooling effect at specific levels. This is a quite unexpected results, emphasizing the important role of LW radiation.
    No preview · Article · Mar 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ExoMars/Ma_Miss instrument is a miniaturized spectrometer that will observe the Martian subsoil in the visible and near infrared range (VNIR, 0.4–2.2 μm) with high spatial resolution, 120 μm. It will be integrated in the Drilling system of the Pasteur Rover of the ExoMars 2018 mission, and will acquire reflectance spectra of the borehole wall performed by the Drill, at various depths down to 2 meters. The laboratory breadboard instrument consists of the main subsystems: illumination system, optical fibres for illumination and signal collection, and optical elements for light focusing. It has been interfaced with a commercial spectrometer, the FieldSpec Pro©. The primary aim of this work is to compare the VNIR measurements and spectral parameters derived from the spectra acquired with the Ma_Miss breadboard and with a second laboratory setup. Reflectance spectra have been acquired on a set of six rock powder samples representative of Martian soil. Nine different grain size ranges of each sample have been measured with the breadboard and five spectral parameters were used to explore the Ma_Miss spectra. Those data were compared with spectra acquired by the FieldSpec Pro ® coupled with a goniometer. The analyses of these spectral parameters evidence the correlation between the VNIR continuum slope and the grain size, and the correlation between the reflectance and the grain size; both the parameters tend to decrease as the grain size increases. The trends observed with Ma_Miss breadboard for NIR and VNIR slopes and for the reflectance are clearly consistent with the trends observed with the spectro-goniometer setup, although small differences are seen that can be explained with the different viewing geometries of the two instruments. Ma_Miss proves to have great capabilities for extracting spectroscopic information to constrain the mineralogy and some physical parameters of the analysed material.
    No preview · Article · Oct 2014 · Planetary and Space Science
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The study of the Martian subsurface will provide important constraints on the nature, timing and duration of alteration and sedimentation processes on Mars, as well as on the complex interactions between the surface and the atmosphere. A Drilling system, coupled with an in situ analysis package, is installed on the ExoMars Rover to perform in situ investigations up to 2m in the Mars soil. Ma_Miss (Mars Multispectral Imager for Subsurface Studies) is a spectrometer devoted to observe the lateral wall of the borehole generated by the Drilling system [1,2]. The instrument is fully integrated with the Drill and shares its structure and electronics.
    Full-text · Conference Paper · Sep 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ExoMars 2018 mission will investigate the Martian surface environment with the aim of searching for eventual present or past signs of life, and to obtain a characterization of Martian soil and subsoil. The investigation of the near-surface environment and of the shallow subsurface with complementary techniques, will provide insights on the chemical and mineralogical composition, material grain size, the litotypes, the stratigraphy: these information will help us to understand the geologic processes that characterized the history of the Martian crust. The Ma Miss (Mars Multispectral Imager for Subsurface Studies) instrument (Coradini et al. 2001) is a miniaturized visible and near-infrared spectrometer, integrated in the ExoMars Pasteur Rover Drill: it will acquire spectra of the borehole wall performed by the Drill, down to a depth up to two meters. Spectroscopic tests have been performed with the laboratory model (breadboard) on spectral targets and rock samples; furtherly, an activity of VNIR reflectance spectroscopy of Mars analogues has been begun with the breadboard to build a spectral library.
    Full-text · Article · Jan 2014

  • No preview · Conference Paper · Jan 2014

  • No preview · Conference Paper · Jan 2014
  • [Show abstract] [Hide abstract]
    ABSTRACT: The InfraRed Auroral Mapper (JIRAM) is simultaneously an imager and a spectrometer on board of the Juno mission. Jupiter's reflected and emitted light in the range 2-5 μm can be sensed through its spectral channel and H3+ emissions analyzed to retrieve auroral parameters. JIRAM is also able to map the infrared Jupiter aurora in the 3.5 μm and planet's thermal emissions in the 5 μm wavelength ranges through its L-band and M-band imager filters . The main scientific goals are the study of auroras, hot spots and other Jupiter atmospheric structures detectable in its working spectral range. Concurrently with the Juno Earth fly-by, that will occur on October 9th of this current year, JIRAM will observe the Moon during its transit approaching the Earth. As the instrument's temperature cannot be actively controlled, operating with a passive cooling system, the Earth will not be observed during the closest approach. A dramatic temperature increase of the instrument, far above its performance limit, is expected in fact by the illumination of the instrument's cooling radiators due to our planet reflection of the solar illumination. The Moon will be the only chance for an extended target observation that JIRAM can experience before Jupiter. Consequently, this opportunity is of pivotal importance being the only chance for a real in-flight test to verify the instrument performances and the radiometric calibration in real observational set up. The instrument will be operated in the same functional configuration that it will use at Jupiter. So far, the only absolute radiometric calibration has been performed in lab during the on ground calibration and functional test sessions. The internal calibration unit is mainly devoted to the spectral calibration checking while the absolute radiometric calibration has to verified and confirmed in flight. Results of lunar observations will be presented.
    No preview · Article · Dec 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present correlated studies of spectroscopy, petrology and chemistry of howadites, and discuss them in relation to Dawn mission results.
    Full-text · Article · Sep 2013
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The urban forcing on thermo-dynamical conditions can largely influences local evolution of the atmospheric boundary layer. Urban heat storage can produce noteworthy mesoscale perturbations of the lower atmosphere. The new generations of high-resolution numerical weather prediction models (NWP) is nowadays largely applied also to urban areas. It is therefore critical to reproduce correctly the urban forcing which turns in variations of wind, temperature and water vapor content of the planetary boundary layer (PBL). WRF-ARW, a new model generation, has been used to reproduce the circulation in the urban area of Rome. A sensitivity study is performed using different PBL and surface schemes. The significant role of the surface forcing in the PBL evolution has been verified by comparing model results with observations coming from many instruments (LiDAR, SODAR, sonic anemometer and surface stations). The crucial role of a correct urban representation has been demonstrated by testing the impact of different urban canopy models (UCM) on the forecast. Only one of three meteorological events studied will be presented, chosen as statistically relevant for the area of interest. The WRF-ARW model shows a tendency to overestimate vertical transmission of horizontal momentum from upper levels to low atmosphere, that is partially corrected by local PBL scheme coupled with an advanced UCM. Depending on background meteorological scenario, WRF-ARW shows an opposite behavior in correctly representing canopy layer and upper levels when local and non local PBL are compared. Moreover a tendency of the model in largely underestimating vertical motions has been verified.
    Full-text · Article · Jun 2013 · Atmospheric Measurement Techniques
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Ground-based and Airborne Measurements of the Aerosol Radiative Forcing (GAMARF) campaign was carried out during spring 2008 in Lampedusa Island (Central Mediterranean). Several flights were performed by an instrumented ultralight in different atmospheric conditions. In situ measurements of aerosol size distribution vertical profiles were used together with ground-based measurements of aerosol optical depth and ÅAngström exponent to retrieve simultaneously profiles of the aerosol radiative properties and its effective refractive index. The retrieved backscattering and extinction profiles are in agreement with independent Lidar measurements, within the estimated uncertainties. This analysis suggests that in situ measurements of aerosol distribution can be used quantitatively for the determination of the aerosol optical and radiative properties.
    Full-text · Conference Paper · May 2013

Publication Stats

565 Citations
85.64 Total Impact Points

Institutions

  • 2014-2015
    • ENEA
      • Earth Observations and Analyses Laboratory UTMEA-TER
      Roma, Latium, Italy
  • 1029-2012
    • Università degli Studi di Roma "La Sapienza"
      • Department of Physics
      Roma, Latium, Italy
  • 2009
    • Università degli Studi Europea di Roma
      Roma, Latium, Italy