Yong-Cheng Li

Jiangnan University, Wu-hsi, Jiangsu Sheng, China

Are you Yong-Cheng Li?

Claim your profile

Publications (4)8.31 Total impact

  • Yong-Cheng Li · Wen-Yi Tao
    [Show abstract] [Hide abstract]
    ABSTRACT: Fusarium mairei, a paclitaxel-producing fungal endophyte, its effects on taxoid synthesis in Taxus cells were investigated via adding the fungal endophyte culture supernatants (FECS) to the suspension cultures of Taxus cuspidata. The concentration of FECS was determined on its total carbohydrate. When 100 mL of Taxus cell suspension cultures were treated with several dosages of FECS (4, 6 and 8 g) at day10, the cultures treated with 6 g FECS produced the highest yield of paclitaxel (5.84 mg L−1), which was 1.8-fold the yield from controls (3.14 mg L−1). The major elicitor element in FECS was an oligosaccharide of 2 kDa. In addition, the cultures treated with 6 g FECS resulted in 25.86 mg L−1 of the precursor 10-deacetylbaccatin III (10-DAB) accumulation, which was 11 times that of control cultures (2.32 mg L−1), and 4.7 times higher than that of cultures treated with 200 μM methyl jasmonate (MJ) (5.43 mg L−1). These results indicate that FECS favors to stimulate 10-DAB accumulation more effectively than paclitaxel accumulation.
    No preview · Article · Jun 2009 · Scientia Horticulturae
  • Yong-Cheng Li · Wen-Yi Tao
    [Show abstract] [Hide abstract]
    ABSTRACT: Effects of a fungal endophyte, Fusarium mairei, on growth and paclitaxel formation of Taxus cuspidata cells were investigated by adding fungal endophyte culture supernatant (FECS) to suspension cultures of T.cuspidata cells. The main effective chemical responsible for paclitaxel formation in FECS was an exopolysaccharide (EPS) of molecular weight ~2kDa. FECS fractions except EPS stimulated growth of Taxus cells but had no effects on paclitaxel accumulation. Additionally, elicitation efficiency of FECS based on different culture conditions was studied. EPS content in FECS was related to FECS culture conditions. FECS with long cultivation and high-aeration cultivation contained higher EPS content and resulted in higher paclitaxel yield than that with short cultivation and low-aeration cultivation. The maximum yield of paclitaxel from Taxus cultures, elicited by FECS with 9-day cultivation, was 4.7-fold that of the control cultures.
    No preview · Article · May 2009 · Plant Growth Regulation
  • Yong-Cheng Li · Wen-Yi Tao · Long Cheng
    [Show abstract] [Hide abstract]
    ABSTRACT: The co-culture of the suspension cells of Taxus chinensis var. mairei and its endophytic fungi, Fusarium mairei, in a 20-L co-bioreactor was successfully established for paclitaxel production. The co-bioreactor consists of two-unit tanks (10 L each) with a repairable separate membrane in the center, culturing Taxus suspension cells in one tank and growing fungi in another. By optimizing the co-culture conditions, there was a desirable yield of paclitaxel in Taxus cell cultures. The Taxus cell cultures by co-culture produced 25.63 mg/L of paclitaxel within 15 days; it was equivalent to a productivity of 1.71 mg/L per day and 38-fold higher than that by uncoupled culture (0.68 mg/L within 15 days). The optimum conditions for co-culture in the co-bioreactor were: B5 medium, inoculating fungi when Taxus cells had grown for 5 days in the co-bioreactor, hydrophilic separate membrane in the center of the co-bioreactor, and air flow rate of 1:0.85 v/v/m in fungus cultures.
    No preview · Article · Feb 2009 · Applied Microbiology and Biotechnology
  • Source
    Yong-Cheng Li · Wen-Yi Tao
    [Show abstract] [Hide abstract]
    ABSTRACT: Endophytic fungi (Fusarium mairei) culture broth (EFCB) was added to cell suspension cultures of Taxus cuspidata. After 5 days, cultures of T. cuspidata given 4 ml of EFCB produced a maximal yield of 6.11 mg/l paclitaxel, with a release ratio of 75%, 2- and 6.8-fold, respectively, greater than the controls. The active element in EFCB is an exopolysaccharide of approximately 79 kD. Endophytic fungi produced 0.19 mg/l of paclitaxel in its producing medium. However, when the supernatant of Taxus cell suspension cultures from day 20 was added to the paclitaxel-producing medium, the biomass of fungi decreased by 24% and the yield of paclitaxel by 45%. In a co-culture system of plant and fungus, the yield of paclitaxel (12.8 mg/l) was >2-fold higher than that in the EFCB-treatment system.
    Preview · Article · Nov 2008 · Cell Biology International

Publication Stats

60 Citations
8.31 Total Impact Points


  • 2009
    • Jiangnan University
      • School of Biotechnology
      Wu-hsi, Jiangsu Sheng, China
  • 2008-2009
    • Hainan University
      Haikou, Yunnan, China