Are you Takahiro Naiki?

Claim your profile

Publications (3)

  • Yukio Yamaguchi · Takahiro Naiki · Kenji Irie
    [Show abstract] [Hide abstract] ABSTRACT: Post-transcriptional regulation of gene expression by RNA-binding proteins has pivotal roles in many biological processes. We have shown that Stau1, a conserved RNA-binding protein, negatively regulates myogenesis in C2C12 myoblasts. However, its target mRNAs in regulation of myogenesis remain unknown. Here we describe that Stau1 positively regulates expression of Dvl2 gene encoding a central mediator of Wnt pathway in undifferentiated C2C12 myoblasts. Stau1 binds to 3' untranslated region (UTR) of Dvl2 mRNA and Stau1 knockdown shortened a half-life of the mRNA containing Dvl2 3' UTR. After induction of myogenic differentiation, association of Stau1 with 3' UTR of Dvl2 mRNA was decreased. Correlated with the decrease in the association, the Dvl2 mRNA level was reduced during myogenesis. A forced expression of Dvl2 markedly inhibited progression of myogenic differentiation. Our results suggest that Dvl2 has an inhibitory role in myogenesis and Stau1 coordinates myogenesis through the regulation of Dvl2 mRNA.
    Article · Dec 2011 · Biochemical and Biophysical Research Communications
  • Toshiyuki Fukuda · Takahiro Naiki · Marie Saito · Kenji Irie
    [Show abstract] [Hide abstract] ABSTRACT: Heterogeneous nuclear ribonucleoprotein K (hnRNP K) is a conserved RNA-binding protein that is involved in multiple processes of gene expression, including chromatin remodeling, transcription, RNA splicing, mRNA stability and translation, together with diverse groups of molecular partners. Here we identified a previously uncharacterized protein RNA binding motif protein 42 (RBM42) as hnRNP K-binding protein. RBM42 directly bound to hnRNP K in vivo and in vitro. RBM42 also directly bound to the 3' untranslated region of p21 mRNA, one of the target mRNAs for hnRNP K. RBM42 predominantly localized within the nucleus and co-localized with hnRNP K there. When cells were treated with agents, puromycin, sorbitol or arsenite, which induced the formation of stress granules (SGs), cytoplasmic aggregates of stalled translational pre-initiation complexes, both hnRNP K and RBM42 localized at SGs. Depletion of hnRNP K by RNA interference decreased cellular ATP level following release from stress conditions. Simultaneous depletion of RBM42 with hnRNP K enhanced the effect of the hnRNP K depletion. Our results indicate that hnRNP K and RBM42 are components of SGs and suggest that hnRNP K and RBM42 have a role in the maintenance of cellular ATP level in the stress conditions possibly through protecting their target mRNAs.
    Article · Mar 2009 · Genes to Cells
  • Yukio Yamaguchi · Remi Oohinata · Takahiro Naiki · Kenji Irie
    [Show abstract] [Hide abstract] ABSTRACT: Sequential expression of myogenic regulatory factors (MRFs) such as MyoD and myogenin drives myogenic differentiation. Besides transcriptional activation of MRFs, this process is also coordinated by post-transcriptional regulation; MyoD and myogenin mRNAs are stabilized by RNA-binding protein HuR. Stau1 is known to regulate mRNA stability in a complex with Upf1, which is termed Stau1-mediated mRNA decay (SMD). We describe here that Stau1 is involved in the regulation of myogenesis. We found that knockdown of Stau1 promotes myogenesis including the expression of a muscle-specific marker protein, myoglobin, in C2C12 myoblasts. MyoD induces myogenin expression in response to induction of myogenesis, which is a key step to start myogenesis. The level of MyoD protein was not affected when Stau1 was depleted by siRNA, whereas the levels of myogenin mRNA and protein were increased in Stau1-knockdown cells. Interestingly, myogenin promoter activity was also increased in Stau1-knockdown cells in the absence of induction of myogenesis. Furthermore, Stau1-knockdown cells spontaneously progressed myogenesis including the expression of muscle-specific protein. Although Stau1 is involved in mRNA decay together with Upf1, Upf1-knockdown did not affect progression of myogenesis. Our results suggest that Stau1 negatively regulates myogenesis in C2C12 myoblasts through a mechanism that is different from SMD.
    Article · Jul 2008 · Genes to Cells