Jun-Quan Zhu

Ningbo University, Ning-po, Zhejiang Sheng, China

Are you Jun-Quan Zhu?

Claim your profile

Publications (26)47.7 Total impact

  • Shun Cheng · Zhang Sheng · Jun-Quan Zhu · Xiong-Fei Wu
    [Show abstract] [Hide abstract]
    ABSTRACT: Cryopreservation and the effect of additives on the plasma membrane stability, motility, enzyme activity, membrane lipid composition, and ultrastructural injury of sperm of Pseudosciaena crocea, were examined in this study. Results indicated that the addition of trehalose (TH) and bovine serum albumin (BSA) provided significantly better results in the motility test compared to sucrose. Some BSA groups, showed significantly increased semen motility and effective enzyme activity. There were no significant differences between the cholesterol (CHO) composition for fresh sperm and cryopreserved sperm stored in 3 g/L BSA or 8.56 g/L TH+3 g/L BSA. Ultrastructural injury included damaged membrane, lost mitochondria, or broken flagella, whereas the majority of the freeze-thawed sperm remained morphologically normal. In conclusion, the addition of 3 g/L BSA and 8.56 g/L TH+3 g/L BSA significantly increased semen quality.
    No preview · Article · Jan 2016 · The Israeli journal of aquaculture = Bamidgeh
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cadmium (Cd) is known as a widespread pollutant in aquatic environment. The accumulation of reactive oxygen species (ROS) is attributed to Cd exposure, which may affect the growth, development and physiological metabolism of aquatic organisms. In response to these unfavorable damages, antioxidant systems have been developed to protect against oxidative stress. In this study, we investigated the expression pattern of glutathione peroxidase 1 genes (GPx-1a and GPx-1b) in the liver of Acrossocheilus fasciatus after Cd administration. Total RNA extraction, reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) were performed in order to clone the A. fasciatus GPx-1a and GPx-1b full-length cDNA sequences and partial fragment of β-actin cDNA from the liver for the first time. Tissue-specific expression analysis proved that GPx-1 genes were widely expressed in liver, kidney, gill, testis, muscle, spleen, heart and brain. The changes of GPx-1 mRNA and malondialdehyde (MDA) levels in the liver treated with Cd were measured. In addition, the acute toxic effects of Cd on the microstructure of the liver were studied using light microscopy. These results suggest that GPx-1, MDA and liver histology which represent molecular, biochemical and histological levels, can be used as potential biomarkers to monitor Cd pollution. The overall findings also highlight the potential use of those three bio-indicators combined together as a multi-level tool (molecular, biochemical and histological levels) when monitoring Cd contamination and other possible exogenetic pollutants in aquatic environment.
    No preview · Article · Dec 2015 · Gene
  • Su-Yan Fu · Jian-Hu Jiang · Wan-Xi Yang · Jun-Quan Zhu
    [Show abstract] [Hide abstract]
    ABSTRACT: Testis development and ultrastructural features of spermatogenesis in Acrossocheilus fasciatus (Cypriniformes, Barbinae), a commercial stream fish, were studied using light and electron microscopy. The reproduction cycle in A. fasciatus testes is classified into six successive stages from Stage I to Stage VI. Based on an analysis of previous results, May to July can be confirmed as the best breeding season for A. fasciatus males. During this time, the A. fasciatus testes are in Stage V and the sperm in males is most abundant. In the first reproductive cycle, sexually mature male testes return to Stage III in October, subsequently overwintering at this stage. In the lobular-type testes of A. fasciatus, cystic type spermatogenesis occurs with restricted spermatogonia. All spermatogenic cells at different stages are distributed along the seminiferous lobules, which contain spermatogonia, spermatocytes, spermatids and spermatozoa. At the end of spermatogenesis, spermatogenic cysts open to release spermatozoa into the lobule lumen. Ultrastructural observation of A. fasciatus spermiogenesis reveals that electron-dense substances appear at the different stages of germ cells, from primary spermatogonia to secondary spermatocytes. We have termed these dense substances as “nuage” when free in the cytoplasm or adjacent to the nuclear envelope, while those close to the mitochondria are called inter-mitochondrial cement. The spermatozoa in A. fasciatus can be classified as type I due to the presence of nuclear rotation. Although the nuclear chromatin in the head of sperm was highly condensed, no acrosome was formed. The cytoplasmic canal, a common ultrastructural feature of Teleostei spermatozoa, was also present in the midpiece. In addition, numerous fused mitochondria were observed. The distal centriole and proximal centriole constituting the centriolar complex were oriented incompletely perpendicular to each other. The flagellum showed a typical 9 + 2 arrangement pattern. Conversely, our study on A. fasciatus yielded no information concerning the lateral fins although an enlarged saclike area was present at the end of some flagella.
    No preview · Article · Nov 2015 · Tissue and Cell
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heat shock protein 70 (HSP70) is molecular chaperone that is important for reproductive biological processes. In this study, a full length HSP70 from the mudskipper (Boleophthalmus pectinirostris) was characterized. It was found to contain: a 108bp 5'-untranslated region, a 208bp 3'-untranslated region, and a 1953bp open reading frame, which encodes a protein of 650 amino acids with a theoretical molecular weight of 71.1kDa and an isoelectric point of 5.17. RT-PCR analysis revealed that HSP70 was ubiquitously expressed in all major tissues with differential expression levels. This suggests that HSP70 has vital and conserved biological functions. HSP70 was localized mainly in the cytoplasm of germinal cells, indicating an important role of this protein during spermatogenesis. In response to heat stress, the testes presented abnormal morphology in connective tissues, in which HSP70 immunoreactivity was not observed. HSP70 mRNA expression in the gill, liver, and testes was significantly increased, which suggests that HSP70 plays an important role in protection against heat stress.
    No preview · Article · Sep 2015 · Gene
  • [Show abstract] [Hide abstract]
    ABSTRACT: The gene encoding heat shock protein 70 (HSP70) was identified in Octopus tankahkeei by homologous cloning and rapid amplification of cDNA ends (RACE). The full-length cDNA (2471 bp) consists of a 5'-untranslated region (UTR) (89 bp), a 3'-UTR (426 bp), and an open reading frame (1956 bp) that encodes 651 amino acid residues with a predicted molecular mass of 71.8 kDa and an isoelectric point of 5.34. Based on the amino acid sequence analysis and multiple sequence alignment, this cDNA is a member of cytoplasmic hsp70 subfamily of the hsp70 family and was designated as ot-hsp70. Tissue expression analysis showed that HSP70 expression is highest in the testes when all examined organs were compared. Immunohistochemistry analysis, together with hematoxylin-eosin staining, revealed that the HSP70 protein was expressed in all spermatogenic cells, but not in fibroblasts. In addition, O. tankahkeei were heat challenged by exposure to 32 °C seawater for 2 h, then returned to 13 °C for various recovery time (0-24 h). Relative expression of ot-hsp70 mRNA in the testes was measured at different timepoints post-challenge by quantitative real-time PCR. A clear time-dependent mRNA expression of ot-hsp70 after thermal stress indicates that the HSP70 gene is inducible. Ultrastructural changes of the heat-stressed testis were observed by transmission electron microscopy. We suggest that HSP70 plays an important role in spermatogenesis and testis protection against thermal stress in O. tankahkeei. Copyright © 2015. Published by Elsevier Inc.
    No preview · Article · May 2015 · Comparative biochemistry and physiology. Part A, Molecular & integrative physiology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metallothioneins (MTs) are cysteine-rich, low molecular weight, and heavy metal-binding protein molecules. MT participates in metallic homeostasis and detoxification in living animals due to its abundant cysteine. In order to investigate the functions of MT during spermiogenesis in the mudskipper (Boleophthalmus pectinirostris), we identified the MT complete which contains: an 83bp 5' untranslated region, a 110bp 3' untranslated region, and a 183bp open reading frame. The protein alignment between MT sequences of other species shows a high similarity and a strong identity in cysteine residues vital for the metal-binding affinity of MT. The localizations of MT were mainly in the cytoplasm of germinal cells, indicating a role in spermatogenesis and testis protection. After the cadmium (Cd) exposure, the testis presents abnormal morphology and MT mRNA expression, both of which indicate a sensitive response of testis MT to Cd. Therefore, we suggest that MTs play an important role in spermatogenesis and testes protection against Cd toxicity in B. pectinirostris. Copyright © 2015 Elsevier Inc. All rights reserved.
    Full-text · Article · May 2015 · Ecotoxicology and Environmental Safety
  • Source
    Zhang Sheng · Wan-Xi Yang · Jun-Quan Zhu
    [Show abstract] [Hide abstract]
    ABSTRACT: Metallothioneins (MTs) are a family of stress proteins that are involved in the process of detoxification and anti-oxidation. Previous studies have focused mostly on the expression and functions of MTs in the non-reproductive tissues of aquatic vertebrates. However, there have been only a few reports regarding the functions of MTs in the reproductive tissues of such vertebrates. In order to investigate the function of MTs during spermatogenesis in Pseudosciaena crocea, reverse-transcription polymerase chain reaction (PCR) and rapid amplification of cDNA ends were performed to obtain the P. crocea MT complete cDNA sequence from the total RNA of the testes for the first time. MT was detected in the liver, kidneys, testes, spleen, gill and muscle of P. crocea by tissue-specific expression analysis. Meanwhile, immunohistochemistry staining indicated that the MT protein was localized in germ cells, Sertoli cells and the peripheral connective tissues in P. crocea testes. Furthermore, acute toxicity tests were conducted with cadmium (Cd) to determine the 96 h-medial lethal concentration value. The toxic effects of Cd on the microstructure and ultrastructure of the testes were observed. In addition, the changes in MT mRNA expression levels in the testes after Cd exposure were measured using real-time quantitative PCR. Consequently, we suggest that MTs play an important role in spermatogenesis and testes protection against Cd toxicity in P. crocea.
    Full-text · Article · Feb 2015 · Ecotoxicology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We used single-cell gel electrophoresis (SCGE) to detect the integrity of sperm DNA of the teleost large yellow croaker, Pseudosciaena crocea, cryopreserved with Cortland solution and a range of 5% to 30% DMSO concentrations in order to test how sperm cryopreservation affected the DNA stability of nuclei. Electrophoresis was conducted for 60 min at 130 mA and 15 V. The comet images were analyzed with software CometScore 1.5, and parameters such as comet length, tail length and percentage DNA in the tail were obtained. Then the comet rate and damage coefficient were calculated. Results demonstrated that there were no significant differences in motility, comet rate and damage coefficient between fresh sperm and cryopreserved sperm stored in 5%, 10%, 15% and 20% DMSO, while the sperm cryopreserved with 25% and 30% DMSO had a lower motility, higher comet length and damage coefficients than those of fresh sperm. There was a positive correlation between comet rate of cryopreserved sperm and the concentration of DMSO. Our results demonstrate that toxicity of the cryoprotectant is the main cause of DNA damage in cryopreserved sperm nuclei.
    Full-text · Article · Dec 2014 · Acta Biologica Hungarica
  • Source
    Guo-Di Liu · I-Shiung Chen · Jun-Quan Zhu · Chia-Ning Shen
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract In this study, the complete mitogenome sequence of small silver gugeon Squalidus gracilis has been amplified. The mitogenome, consisting of 16,605 base pairs (bp), had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region (CR). CR of 928 bp length is located between tRNA(Pro) and tRNA(Phe). The overall base composition of S. gracilis is 29.8% for A, 27.6% for C, 25.7% for T and 16.9% for G, with higher AT content of 55.5%. The complete mitogenome may provide rather essential and important DNA molecular data for further phylogenetic analysis for not only congeneric species but also higher different taxa of Cyprinid fishes.
    Full-text · Article · Apr 2014 · Mitochondrial DNA
  • Guo-Di Liu · I-Shiung Chen · Jun-Quan Zhu · Chia-Ning Shen
    [Show abstract] [Hide abstract]
    ABSTRACT: Abstract In this study, the complete mitogenome sequence of the Chinese rod gugeon, Abbottina rivularis (Basilewsky, 1855) has been amplified. The mitogenome, consisting of 16,608 base pairs (bp), had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a noncoding control region (CR). CR of 929 bp length is located between tRNA(Pro) and tRNA(Phe). The overall base composition of A. rivularis is 29.9% for A, 27.2% for C, 25.7% for T and 17.3% for G, with higher AT content of 55.6%. The complete mitogenome may provide rather essential and important DNA molecular data for further phylogenetic analysis for not only congeneric species but also higher different taxa of Cyprinid fishes.
    No preview · Article · Apr 2014 · Mitochondrial DNA
  • Source
    Dong-Fang Xiang · Jun-Quan Zhu · Cong-Cong Hou · Wan-Xi Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: The Piwi genes have important role in stem cell development, gametogenesis and RNA interference in diverse organisms. So far, most of the studies have focused on the function of Piwis in vertebrates, but their function during spermiogenesis in invertebrates still remains largely unclear. In order to investigate the function of Piwis during spermiogenesis in the crab Portunus trituberculatus, we use RT-PCR and RACE to identify three Piwis complete cDNA sequence from the total RNA of the testis in P. trituberculatus. The deduced amino acid sequences of P. trituberculatus Piwi-1, Piwi-2 and Piwi-3 showed that each contains a well-conserved PAZ domain and PIWI domain. RT-PCR analyzed the tissue expression pattern of P. trituberculatus Piwi-1, Piwi-2 and Piwi-3 in the testis, heart, muscle, hepatopancreas and gill. All of the Piwis are found in germ cells of adult testis in P. trituberculatus by in situ hybridization, suggesting that these genes may play function during spermiogenesis in this species.
    Full-text · Article · Nov 2013 · Gene
  • Source
    Fu-Qing Tan · Xiao-Xin Ma · Jun-Quan Zhu · Wan-Xi Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: In this study, we investigated the gene sequence and characteristic of kifc1 in Sepiella maindroni through PCR and RACE technology. Our research aimed particularly at the spatio-temporal expression pattern of kifc1 in the developmental testis through in situ hybridization. The particular role of kifc1 in the spermatogenesis of S. maindroni was our particular interest. Based on multiple protein sequence alignments of KIFC1 homologues, kifc1 gene from the testis of S. maindroni was identified, which consisted of 2432bp including a 2109 in-frame ORF corresponding to 703 continuous amino acids. The encoded polypeptide shared highest similarity with Octopus tankahkeei. Through the prediction of the secondary and tertiary structure, the motor domain of KIFC1 was conserved at the C-terminal, having putative ATP-binding and microtubule-binding motifs, while the N-terminal was more specific to bind various cargoes for cellular events. The stalk domain connecting between the C-terminal and N-terminal, determined the direction of movement. According to RT-PCR results, the kifc1 gene is not tissue-specific, commonly detected in different tissues, for example, testis, liver, stomach, muscle, caecum and gills. Through an in situ hybridization method, the expression pattern of KIFC1 protein mimics in the spermatogenesis of S. maindroni. During the primary stage of the spermatogenesis, the kifc1 mRNA signal was barely detectable. At the early spermatids, the signal started to be present. With the elongation of spermatids, the signals increased substantially. It peaked and gathered around the acrosome area when the spermatids began to transform to spindle shape. As the spermatids developed into mature sperm, the signal vanished. In summary, the expression of kfic1 at specific stages during spermiogenesis and its distribution shed light on the potential functions of this motor in major cytological transformations. The KIFC1 homologue may provide a direct shaping force to the nucleus or influence the shaping process through indirect regulation.
    Full-text · Article · Sep 2013 · Gene
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although the single-cell gel electrophoresis (SCGE) alkaline comet assay can detect DNA damage quickly and with high sensitivity, it does not work well for cryopreserved sperm of some marine teleosts. Using large yellow croaker Pseudosciaena crocea sperm that were cryopreserved in increasing concentrations (5 to 30%) of DMSO, we made modifications to the classic SCGE method that included using common microscopic slides without rough surfaces, pretreatment of sperm before gel spread, and a single layer of gel. Electrophoresis conditions were 130 mA, 15 V, and 60 min, providing a high SCGE sensitivity and definition of the comet image. The improved method is useful for detecting cryopreserved sperm DNA damage of some marine teleosts, especially for testing the quality of genetic resources.
    Full-text · Article · Jun 2013 · Aquatic Biology
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Metallothioneins (MTs) possess a unique molecular structure that provides metal-binding and redox capabilities. These capabilities include the maintenance of metal equilibria that protect against heavy metals (especially cadmium) and oxidative damage. Past studies have focused on the function of MTs in vertebrates. However, the functions of MTs during spermiogenesis in invertebrates remain unclear. In order to investigate the function of MTs during spermiogenesis in Portunus trituberculatus, we used RT-PCR and RACE to identify two MT complete cDNA sequences in the total RNA from the P. trituberculatus testis. The 450bp MT-1 cDNA consists of a 77bp 5' untranslated region, a 196bp 3' untranslated region, and a 177bp open reading frame that encodes 58 amino acids including 19 cysteines. The 581bp MT-2 cDNA consists of 73bp 5' untranslated region, a 328bp 3' untranslated region, and a 180bp open reading frame that encodes 59 amino acids including 18 cysteines. MT-1 and MT-2 of P. trituberculatus more closely resemble invertebrate (especially crab) MT homologues than vertebrate MT homologues as indicated by protein alignment comparisons and phylogenetic tree analysis. MT-1 and MT-2 were detected in the heart, testis, muscle, hepatopancreas, and gill of P. trituberculatus by tissue expression analysis. In addition, MT-1 and MT-2 are present during the entire process of spermiogenesis in P. trituberculatus as indicated by H&E staining and in situ hybridization. MT-1 and MT-2 expression levels significantly increase after cadmium (Cd) exposure as measured by real-time quantitative PCR analysis. Therefore, we suggest that MT-1 and MT-2 perform important functions in spermiogenesis and testis detoxification in P. trituberculatus.
    Full-text · Article · May 2013 · Aquatic toxicology (Amsterdam, Netherlands)
  • Source
    Huan Mao · Fu-Qing Tan · Da-Hui Wang · Jun-Quan Zhu · Hong Zhou · Wan-Xi Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: Metallothionein (MT) participates in metallic homeostasis and detoxification in living animals. Previous studies have focused mainly on the functions of MT in vertebrates, but the functions of MT during spermiogenesis in invertebrates remain unclear. In order to investigate the functions of MT during spermiogenesis in the Japanese stone crab (Charybdis japonica), we identified the C. japonica MT complete cDNA sequence from the total RNA of the testis using RT-PCR and RACE. The 587bp MT cDNA contains: an 80bp 5' untranslated region, a 333bp 3' untranslated region, and a 174bp open reading frame. MT has 57 amino acids including 19 cysteines. The protein alignment between MT sequences of C. japonica and other crabs shows a high similarity and a strong identity in cysteine residues vital for the metal-binding affinity of MT. After the cadmium (Cd) exposure, the testis displays both abnormal morphology and MT mRNA expression both of which indicate a sensitive response of testis MT to Cd. Therefore, we suggest that MT is an excellent biomarker candidate for evaluating Cd pollution.
    Full-text · Article · Jul 2012 · Aquatic toxicology (Amsterdam, Netherlands)
  • Source
    Ran Dang · Jun-Quan Zhu · Fu-Qing Tan · Wei Wang · Hong Zhou · Wan-Xi Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: KIF3B is known for maintaining and assembling cilia and flagellum. To date, the function of KIF3B and its relationship with KIF3A during spermiogenesis in the cephalopod Octopus tankahkeei remains unknown. In the present study, we characterized a gene encoding a homologue of rat KIF3B in the O. tankahkeei testis and examined its temporal and spatial expression pattern during spermiogenesis. The cDNA of KIF3B was obtained with degenerate and RACE PCR and the distribution pattern of ot-kif3b were observed with RT-PCR. The morphological development during spermiogenesis was illustrated by histological and transmission electron microscopy and mRNA expression of ot-kif3b was observed by in situ hybridization. The 2,365 nucleotides cDNA consisted of a 102 bp 5' untranslated region (UTR), a 2,208 bp open reading frame (ORF) encoding a protein of 736 amino acids, and a 55 bp 3' UTR. Multiple alignments revealed that the putative Ot-KIF3B shared 68, 68, 69, 68, and 67% identity with that of Homo sapiens, Mus musculus, Gallus gallus, Danio rerio, and Xenopus laevis, respectively, along with high identities with Ot-KIF3A in fundamental structures. Ot-kif3b transcripts appeared gradually in early spermatids, increased in intermediate spermatids and maximized in drastically remodeled and final spermatids. The kif3b gene is identified and its expression pattern is demonstrated for the first time in O. tankahkeei. Compared to ot-kif3a reported by our laboratory before, our data suggested that the putative heterodimeric motor proteins Ot-KIF3A/B may be involved in intraspermatic transport and might contribute to structural changes during spermiogenesis.
    Full-text · Article · Dec 2011 · Molecular Biology Reports
  • Source
    Xiao-Xin Ma · Jun-Quan Zhu · Hong Zhou · Wan-Xi Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: The egg envelope is an essential structure occurring during oogenesis. It plays an important role during the process of fertilization in the large yellow croaker Pseudosciaena crocea. Elucidation of egg envelope formation helps us to understand fertilization mechanisms in teleosts. In the present work, we studied the formation of egg envelope in P. crocea by light microscopy, as well as by transmission and scanning electron microscopy. Four layers exist outside the oocyte plasmalemma, i.e., theca cell layer, basal membrane, granulosa cell layer and zona radiata. According to our observation, zona radiata is a multilaminar structure just like the same structure reported in teleosts, but the origin of this structure is a little different. Before it is formed, a peripheral space filled with different density of vesicles is the place where zona radiata is formed. Zona radiata (Z1) is secreted only by oocyte itself, it belongs to the primary envelope; zona radiata 2 (Z2) and zona radiata 3 (Z3) belong to the secondary envelope, because the two layers are formed after granulosa cells appear, and microvilli participate this process. It is very interesting that Z2 and Z3 are situated between Z1 and the granulosa cell first, but they translocate to the other side of Z1. This microanatomy difference may due to the participation of microvilli. The new finding about egg envelope formation in P. crocea will help us to do further investigation on fertilization mechanisms and will make artificial breeding possible which may contribute to the resource recovery of this species.
    Full-text · Article · Oct 2011 · Micron
  • Source
    Wei Wang · Jun-Quan Zhu · He-Ming Yu · Fu-Qing Tan · Wan-Xi Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: Nuclear morphogenesis is one of the most fundamental cellular transformations taking place during spermatogenesis. In rodents, a microtubule-based perinuclear structure, the manchette, and a C-terminal kinesin motor KIFC1 are believed to play crucial roles in this process. Spermatogenesis in Octopus tankahkeei is a good model system to explore whether evolution has created a cephalopod prototype of mammalian manchette-based and KIFC1-dependent sperm nuclear shaping machinery. We detected the presence of a KIFC1-like protein in the testis, muscle, and liver of O. tankahkeei by Western Blot. Then we tracked its dynamic localization in spermatic cells at various stages using Immunofluorescence and Immunogold Electron Microscopy. The KIFC1-like protein was not expressed at early stages of spermatogenesis when no significant morphological changes occur, began to be present in early spermatid, localized around and in the nucleus of intermediate and late spermatids where the nucleus was dramatically elongated and compressed, and concentrated at one end of final spermatid. Furthermore, distribution of the motor protein during nuclear elongation and condensation overlapped with that of the cephalopod counterpart of manchette at a significant level. The results support the assumption that the protein is actively involved in sperm nuclear morphogenesis in O. tankahkeei possibly through bridging the manchette-like perinuclear microtubules to the nucleus and assisting in the nucleocytoplasmic trafficking of specific cargoes. This study represents the first description of the role of a motor protein in sperm nuclear shaping in cephalopod.
    Full-text · Article · Dec 2010 · PLoS ONE
  • Source
    Wei Wang · Ran Dang · Jun-Quan Zhu · Wan-Xi Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: KIF3A is a subunit of the heterotrimeric Kinesin-II motor which achieves fame for its pivotal roles in the assembly and maintenance of cilia and flagella and in intracellular transport of membrane bound organelles and protein complexes in various tissues. Its intimacy to the cell's antenna, namely the primary cilia, makes it also involved in some signaling transduction pathways. To test the idea that KIF3A functions during spermiogenesis of the octopod Octopus tankahkeei, we hereby identified a gene (designated as ot-kif3a) encoding a protein apparently homologous to a group of KIF3As, from the testis of this organism. The full-length ot-kif3a comprised a 344bp 5' untranslated region, a 2241bp open reading frame and a 147bp 3' untranslated region. The putative protein consisted of 746 amino acid residues with a calculated molecular weight of 85kDa and a predicted isoelectric point of 6.36. It shared an overall sequence identity of 69%, 69%, 69% and 67% to KIF3A from Homo sapiens, Rattus norvegicus, Mus musculus and Danio rerio, respectively. Tissue distribution profile analysis unraveled its presence in all the tissues examined. In situ hybridization of mRNA in spermionenic cells demonstrated that ot-kif3a was expressed moderately at the beginning of spermiogenesis. The abundance of transcripts increased in intermediate spermatid and peaked in drastically remodeling and final spermatids. In mature sperm, the message was still visible in the head and tail. The temporal and spatial expression dynamics of ot-kif3a during spermiogenesis supports the possibility that the putative motor protein, OtKIF3A, participates in the major cytological events during this differentiation program and is vital for the acquisition of the final cellular phenotype.
    Full-text · Article · Nov 2010 · Comparative biochemistry and physiology. Part A, Molecular & integrative physiology
  • Source
    Wei Wang · Jun-Quan Zhu · Wan-Xi Yang
    [Show abstract] [Hide abstract]
    ABSTRACT: Spermiogenesis in Octopus tankahkeei involves striking cellular reorganization to generate a mature spermatozoon. This process may require spermatid-specific adaptation of cytoskeleton and associated molecular motor proteins. KIFC1 is a C-terminal kinesin motor with important roles in acrosome biogenesis and nuclear reshaping during spermiogenesis in rat. Here, we have cloned and characterized the gene encoding a homologue of rat KIFC1, termed as ot-kifc1, from the testis of O. tankahkeei. The 2229 bp complete cDNA contains a 75 bp 5'-untranslated region, a 1992 bp open reading frame and a 162 bp 3'-untranslated region. The deduced protein shares an overall identity of 40%, 41%, 39% and 41% with its counterpart from human, rat, mouse and African clawed frog, respectively. Tissue expression analysis revealed ot-kifc1 was expressed in testis, gill and hepatopancreas, but not in other tissues examined. In situ hybridization result showed the ot-kifc1 message was hardly detectable in early spermatid, concentrated at the tail region of intermediate spermatid, abundant in spermatid undergoing dramatic elongation and compression, enriched at one end in late spermatids and disappeared in mature sperm. In conclusion, the expression of ot-kifc1 at specific stages of spermiogenesis suggests a role for this motor in major cytological transformations.
    Full-text · Article · Mar 2010 · Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology