Marc Rafelski

NASA, Вашингтон, West Virginia, United States

Are you Marc Rafelski?

Claim your profile

Publications (52)204.54 Total impact

  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we study the causes of the reported mass-dependence of the slope of SFR-M* relation, the so-called "Main Sequence" of star-forming galaxies, and discuss its implication on the physical processes that shaped the star formation history of massive galaxies over cosmic time. We use the CANDELS near-IR imaging from the Hubble Space Telescope to perform the bulge-to-disk decomposition of distant galaxies and measure for the first time the slope of the SFR-Mdisk relation at z=1. We find that this relation follows very closely the shape of the SFR-M* correlation, still with a pronounced flattening at the high-mass end. This is clearly excluding, at least at z=1, the secular growth of quiescent bulges in star-forming galaxies as the main driver for the change of slope of the Main Sequence. Then, by stacking the Herschel data available in the CANDELS field, we estimate the total gas mass and the star formation efficiency at different positions on the SFR-M* relation. We find that the relatively low SFRs observed in massive galaxies (M* > 5e10 Msun) are caused by a decreased star formation efficiency, by up to a factor of 3 as compared to lower stellar mass galaxies, and not by a reduced gas content. The trend at the lowest masses is likely linked to the dominance of atomic over molecular gas. We argue that this stellar-mass-dependent SFE can explain the varying slope of the Main Sequence since z=1.5, hence over 70% of the Hubble time. The drop of SFE occurs at lower masses in the local Universe (M* > 2e10 Msun) and is not present at z=2. Altogether this provides evidence for a slow downfall of the star formation efficiency in massive Main Sequence galaxies. The resulting loss of star formation is found to be rising starting from z=2 to reach a level comparable to the mass growth of the quiescent population by z=1. We finally discuss the possible physical origin of this phenomenon.
    No preview · Article · Jan 2016
  • [Show abstract] [Hide abstract]
    ABSTRACT: We use the Hubble Space Telescope (HST) archive of ultraviolet (UV) quasar spectroscopy to conduct the first blind survey for damped Ly-alpha absorbers (DLAs) at low redshift (z < 1.6). Our statistical sample includes 463 quasars with spectral coverage spanning a total redshift path, dz = 123.3 or an absorption path, dX = 229.7. Within this survey path, we identify 4 DLAs, defined as absorbers with HI column density N(HI) >= 10^20.3cm-2, which implies an incidence per absorption length, l(X)= 0.017(+0.014-0.008) at a median survey path redshift of z=0.623. While our estimate of l(X) is lower than earlier estimates at z ~ 0 from HI 21cm emission studies, the results are consistent within the measurement uncertainties. Our dataset is too small to properly sample the N(HI) frequency distribution function f(N(HI),X), but the observed distribution agrees with previous estimates at z > 2. Adopting the z > 2 shape of f(N(HI),X), we infer an HI mass density at z ~ 0.6 of rho_HI = 0.25(+0.20-0.12) x 10^8 Msol Mpc-3. This is significantly lower than previous estimates from targeted DLA surveys with the HST, but consistent with results from low-z HI 21cm observations, and suggests that the neutral gas density of the universe has been decreasing over the past 10 Gyrs.
    No preview · Article · Jan 2016
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To date no direct detection of Lyman continuum emission has been measured for intermediate--redshift z~1 star-forming galaxies . We combine HST grism spectroscopy with GALEX UV and ground--based optical imaging to extend the search for escaping Lyman continuum to a large (~600) sample of z~1 low-mass, moderately star-forming galaxies selected initially on H$\alpha$ emission. The characteristic escape fraction of LyC from SFGs that populate this parameter space remains weakly constrained by previous surveys, but these faint SFGs are assumed to play a significant role in the reionization of neutral hydrogen in the intergalactic medium (IGM) at high redshift (z>6). We do not make an unambiguous detection of escaping LyC radiation from this $z\sim1$ sample, individual non--detections to constrain the absolute Lyman continuum escape fraction, $f_{esc}$<2.1% (3$\sigma$). We measure upper limits of $f_{esc}$<9.6% from a sample of SFGs selected on high H$\alpha$ equivalent width (EW>200\AA), which are thought to be close analogs of high redshift sources of reionization. For reference, we also present an emissivity--weighted escape fraction which is useful as a measurement of the general contribution of the SFGs to the z~1 ionizing UV background. In the discussion, we consider the implications of these intermediate redshift constraints for the re--ionization of hydrogen in the intergalactic medium at high (z>6) redshift. If the escape fraction of SFGs increases with redshift or an unobserved population of faint (M$_{UV}$<-13 AB) SFGs with $f_{esc}$>3% contributes significantly, reionization by SFGs is marginally consistent with independent observations from Planck.
    Preview · Article · Nov 2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present photometry and derived redshifts from up to eleven bandpasses for 9927 galaxies in the Hubble Ultra Deep field (UDF), covering an observed wavelength range from the near-ultraviolet (NUV) to the near-infrared (NIR) with Hubble Space Telescope observations. Our Wide Field Camera 3 (WFC3)/UV F225W, F275W, and F336W image mosaics from the ultra-violet UDF (UVUDF) imaging campaign are newly calibrated to correct for charge transfer inefficiency, and use new dark calibrations to minimize background gradients and pattern noise. Our NIR WFC3/IR image mosaics combine the imaging from the UDF09 and UDF12 campaigns with CANDELS data to provide NIR coverage for the entire UDF field of view. We use aperture-matched point-spread function corrected photometry to measure photometric redshifts in the UDF, sampling both the Lyman break and Balmer break of galaxies at z ~ 0.8-3.4, and one of the breaks over the rest of the redshift range. Our comparison of these results with a compilation of robust spectroscopic redshifts shows an improvement in the galaxy photometric redshifts by a factor of two in scatter and a factor three in outlier fraction (OLF) over previous UDF catalogs. The inclusion of the new NUV data is responsible for a factor of two decrease in the OLF compared to redshifts determined from only the optical and NIR data, and improves the scatter at z 2. The panchromatic coverage of the UDF from the NUV through the NIR yields robust photometric redshifts of the UDF, with the lowest OLF available.
    No preview · Article · Jul 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the largest homogeneous survey of z > 4.4 damped Lyα systems (DLAs) using the spectra of 163 QSOs that comprise the Giant Gemini GMOS (GGG) survey. With this survey we make the most precise high-redshift measurement of the cosmological mass density of neutral hydrogen, $\Omega_{\rm H\,{\small i}}$. At such high redshift, important systematic uncertainties in the identification of DLAs are produced by strong intergalactic medium absorption and QSO continuum placement. These can cause spurious DLA detections, result in real DLAs being missed or bias the inferred DLA column density distribution. We correct for these effects using a combination of mock and higher resolution spectra, and show that for the GGG DLA sample the uncertainties introduced are smaller than the statistical errors on $\Omega_{\rm H\,{\small i}}$. We find $\rm \Omega _{\rm H\,\small {I}}=0.98^{+0.20}_{-0.18}\times 10^{-3}$ at 〈z〉 = 4.9, assuming a 20 per cent contribution from lower column density systems below the DLA threshold. By comparing to literature measurements at lower redshifts, we show that $\Omega_{\rm H\,{\small i}}$ can be described by the functional form $\Omega _{\rm H\,\small {I}}(z)\propto (1+z)^{0.4}$. This gradual decrease from z = 5 to 0 is consistent with the bulk of H i gas being a transitory phase fuelling star formation, which is continually replenished by more highly ionized gas from the intergalactic medium and from recycled galactic winds.
    Preview · Article · Jun 2015 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of Halpha (Ha) emitters observable by these future surveys. WISP is an ongoing HST slitless spectroscopic survey, covering the 0.8-1.65micron wavelength range and allowing the detection of Ha emitters up to z~1.5 and [OIII] emitters to z~2.3. We derive the Ha-[OIII] bivariate line luminosity function for WISP galaxies at z~1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the Ha luminosity function from exclusively fitting [OIII] data. Using the z~2 [OIII] line luminosity function, and assuming that the relation between Ha and [OIII] luminosity does not change significantly over the redshift range, we predict the Ha number counts at z~2 - the upper end of the redshift range of interest for the future surveys. For the redshift range 0.7<z<2, we expect ~3000 galaxies/deg^2 for a flux limit of 3x10^{-16} ergs/s/cm^2 (the proposed depth of Euclid galaxy redshift survey) and ~20,000 galaxies/deg^2 for a flux limit of ~10^{-16} ergs/s/cm^2 (the baseline depth of WFIRST galaxy redshift survey).
    Preview · Article · May 2015 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present photometry and derived redshifts from up to eleven bandpasses for 9927 galaxies in the Hubble Ultra Deep field (UDF), covering an observed wavelength range from the near-ultraviolet (NUV) to the near-infrared (NIR) with Hubble Space Telescope observations. Our Wide Field Camera 3 (WFC3)/UV F225W, F275W, and F336W image mosaics from the ultra-violet UDF (UVUDF) imaging campaign are newly calibrated to correct for charge transfer inefficiency, and use new dark calibrations to minimize background gradients and pattern noise. Our NIR WFC3/IR image mosaics combine the imaging from the UDF09 and UDF12 campaigns with CANDELS data to provide NIR coverage for the entire UDF field of view. We use aperture-matched point-spread function corrected photometry to measure photometric redshifts in the UDF, sampling both the Lyman break and Balmer break of galaxies at z~0.8-3.4, and one of the breaks over the rest of the redshift range. Our comparison of these results with a compilation of robust spectroscopic redshifts shows an improvement in the galaxy photometric redshifts by a factor of two in scatter and a factor three in outlier fraction over previous UDF catalogs. The inclusion of the new NUV data is responsible for a factor of two decrease in the outlier fraction compared to redshifts determined from only the optical and NIR data, and improves the scatter at z<0.5 and at z>2. The panchromatic coverage of the UDF from the NUV through the NIR yields robust photometric redshifts of the UDF, with the lowest outlier fraction available.
    Full-text · Article · May 2015 · The Astronomical Journal
  • D. J. Rosario · M. Rafelski
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the relationship between the structure and star formation rate (SFR) of X-ray selected low and moderate luminosity active galactic nuclei (AGNs) in the two Chandra Deep Fields, using Hubble Space Telescope imaging from the Cosmic Assembly Near Infrared Extragalactic Legacy Survey (CANDELS) and deep far-infrared maps from the PEP+GOODS-Herschel survey. We derive detailed distributions of structural parameters and FIR luminosities from carefully constructed control samples of galaxies, which we then compare to those of the AGNs. At z ~ 1, AGNs show slightly diskier light profiles than massive inactive (non-AGN) galaxies, as well as modestly higher levels of gross galaxy disturbance (as measured by visual signatures of interactions and clumpy structure). In contrast, at z ~ 2, AGNs show similar levels of galaxy disturbance as inactive galaxies, but display a red central light enhancement, which may arise from a more pronounced bulge in AGN hosts or extinguished nuclear light. We undertake a number of tests of both these alternatives, but our results do not strongly favor one interpretation over the other. The mean SFR and its distribution among AGNs and inactive galaxies are similar at z> 1.5. At z 1.5.
    No preview · Article · Jan 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Although giant clumps of stars are crucial to galaxy formation and evolution, the most basic demographics of clumps are still uncertain, mainly because the definition of clumps has not been thoroughly discussed. In this paper, we study the basic demographics of clumps in star-forming galaxies (SFGs) at 0.5<z<3, using our proposed physical definition that UV-bright clumps are discrete star-forming regions that individually contribute more than 8% of the rest-frame UV light of their galaxies. Clumps defined this way are significantly brighter than the HII regions of nearby large spiral galaxies, either individually or blended, when physical spatial resolution and cosmological dimming are considered. Under this definition, we measure the fraction of SFGs that contain at least one off-center clump (Fclumpy) and the contributions of clumps to the rest-frame UV light and star formation rate of SFGs in the CANDELS/GOODS-S and UDS fields, where our mass-complete sample consists of 3239 galaxies with axial ratio q>0.5. The redshift evolution of Fclumpy changes with the stellar mass (M*) of the galaxies. Low-mass (log(M*/Msun)<9.8) galaxies keep an almost constant Fclumpy of about 60% from z~3.0 to z~0.5. Intermediate-mass and massive galaxies drop their Fclumpy from 55% at z~3.0 to 40% and 15%, respectively, at z~0.5. We find that (1) the trend of disk stabilization predicted by violent disk instability matches the Fclumpy trend of massive galaxies; (2) minor mergers are a viable explanation of the Fclumpy trend of intermediate-mass galaxies at z<1.5, given a realistic observability timescale; and (3) major mergers are unlikely responsible for the Fclumpy trend in all masses at z<1.5. The clump contribution to the rest-frame UV light of SFGs shows a broad peak around galaxies with log(M*/Msun)~10.5 at all redshifts, possibly linked to the molecular gas fraction of the galaxies. (Abridged)
    Full-text · Article · Oct 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present a robust measurement and analysis of the rest-frame ultraviolet (UV) luminosity function at z=4-8. We use deep Hubble Space Telescope imaging over the CANDELS/GOODS fields, the Hubble Ultra Deep Field and the Year 1 Hubble Frontier Field deep parallel observations. These surveys provides an effective volume of 0.6-1.2 x 10^6 Mpc^3 over this epoch, allowing us to perform a robust search for bright (M_UV < -21) and faint (M_UV=-18) galaxies. We select galaxies using a well-tested photometric redshift technique with careful screening of contaminants, finding a sample of 7446 galaxies at 3.5<z<8.5, with >1000 galaxies at z~6-8. We measure the luminosity function using a Markov Chain Monte Carlo analysis to measure robust uncertainties. At the faint end our results agree with previous studies, yet we find a higher abundance of UV-bright galaxies at z>6, with M* ~ -21 at z>5, different than that inferred based on previous trends at lower redshift. At z=8, a single power-law provides an equally good fit to the UV luminosity function, while at z=6 and 7, an exponential cutoff at the bright-end is moderately preferred. We compare to semi-analytical models, and find that the lack of evolution in M* is consistent with models where the impact of dust attenuation on the bright-end of the luminosity function decreases at higher redshift. We measure the evolution of the cosmic star-formation rate density, correcting for dust attenuation, and find that it declines as (1+z)^(-4.3 +/- 0.5) at z>4, consistent with observations at z>9. Our observations are consistent with a reionization history that starts at z>10, completes at z>6, and reaches a midpoint (x_HII = 0.5) at 6.7<z<9.4. Finally, our observations predict that the abundance of bright z=9 galaxies is likely higher than previous constraints, though consistent with recent estimates of bright z~10 galaxies. [abridged]
    Full-text · Article · Oct 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We study the relationship between the structure and star-formation rate (SFR) of X-ray selected low and moderate luminosity active galactic nuclei (AGNs) in the two Chandra Deep Fields, using Hubble Space Telescope imaging from the Cosmic Assembly Near Infrared Extragalactic Legacy Survey (CANDELS) and deep far-infrared maps from the PEP+GOODS-Herschel survey. We derive detailed distributions of structural parameters and FIR luminosities from carefully constructed control samples of galaxies, which we then compare to those of the AGNs. At z~1, AGNs show slightly diskier light profiles than massive inactive (non-AGN) galaxies, as well as modestly higher levels of gross galaxy disturbance (as measured by visual signatures of interactions and clumpy structure). In contrast, at z~2, AGNs show similar levels of galaxy disturbance as inactive galaxies, but display a red central light enhancement, which may arise due to a more pronounced bulge in AGN hosts or due to extinguished nuclear light. We undertake a number of tests of these alternatives, but our results do not strongly favour one interpretation over the other. The mean SFR and its distribution among AGNs and inactive galaxies are similar at z>1.5. At z<1, however, clear and significant enhancements are seen in the SFRs of AGNs with bulge-dominated light profiles. These trends suggest an evolution in the relation between nuclear activity and host properties with redshift, towards a minor role for mergers and interactions at z>1.5.
    Full-text · Article · Sep 2014 · Astronomy and Astrophysics
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results from a survey designed to probe the star formation properties of 32 damped Lyman α systems (DLAs) at z ∼ 2.7. By using the ‘double-DLA’ technique that eliminates the glare of the bright background quasars, we directly measure the rest-frame far-ultraviolet flux from DLAs and their neighbouring galaxies. At the position of the absorbing gas, we place stringent constraints on the unobscured star formation rates (SFRs) of DLAs to 2σ limits of $\dot{\psi }<0.09\hbox{-}0.27$M⊙ yr−1, corresponding to SFR surface densities Σsfr < 10−2.6–10−1.5M⊙ yr−1 kpc−2. The implications of these limits for the star formation law, metal enrichment, and cooling rates of DLAs are examined. By studying the distribution of impact parameters as a function of SFRs for all the galaxies detected around these DLAs, we place new direct constraints on the bright end of the UV luminosity function of DLA hosts. We find that ≤13 per cent of the hosts have $\dot{\psi }\ge 2$M⊙ yr−1 at impact parameters $b_{\rm dla} \le (\dot{\psi }/{\rm M_{\odot }\, yr^{-1}})^{0.8}+6 \,\rm kpc$, differently from current samples of confirmed DLA galaxies. Our observations also disfavour a scenario in which the majority of DLAs arise from bright Lyman-break galaxies at distances 20 ≤ bdla < 100 kpc. These new findings corroborate a picture in which DLAs do not originate from highly star-forming systems that are coincident with the absorbers, and instead suggest that DLAs are associated with faint, possibly isolated, star-forming galaxies. Potential shortcomings of this scenario and future strategies for further investigation are discussed.
    Full-text · Article · Sep 2014 · Monthly Notices of the Royal Astronomical Society
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the largest, publicly available, sample of Damped Lyman-$\alpha$ systems (DLAs) along Gamma-ray Bursts (GRB) line of sights in order to investigate the environmental properties of long GRBs in the $z=1.8-6$ redshift range. Compared with the most recent quasar DLAs sample (QSO-DLA), our analysis shows that GRB-DLAs probe a more metal enriched environment at $z\gtrsim3$, up to $[X/H]\sim-0.5$. In the $z=2-3$ redshift range, despite the large number of lower limits, there are hints that the two populations may be more similar (only at 90\% significance level). Also at \hiz, the GRB-DLA average metallicity seems to decline at a shallower rate than the QSO-DLAs: GRB-DLA hosts may be polluted with metals at least as far as $\sim 2$kpc from the GRB explosion site, probably due to previous star-formation episodes and/or supernovae explosions. This shallow metallicity trend, extended now up to $z\sim5$, confirms previous results that GRB hosts are star-forming and have, on average, higher metallicity than the general QSO-DLA population. Finally, our metallicity measurements are broadly consistent with the hypothesis of two channels of GRB progenitors, one of which is mildly affected by a metallicity bias. The metallicity evolution of modeled GRB hosts agrees reasonably well with our data up to intermediate redshift, while more data are needed to constrain the models at $z\gtrsim 4$.
    Preview · Article · Aug 2014 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present the rest-frame UV wavelength dependence of the Petrosian-like half-light radius (r 50), and the concentration parameter for a sample of 198 star-forming galaxies at 0.5 < z < 1.5. We find a ~5% decrease in r 50 from 1500 Å to 3000 Å, with half-light radii at 3000 Å ranging from 0.6 kpc to 6 kpc. We also find a decrease in concentration of ~0.07 (1.9 < C 3000 < 3.9). The lack of a strong relationship between r 50 and wavelength is consistent with a model in which clumpy star formation is distributed over length scales comparable to the galaxy's rest-frame optical light. While the wavelength dependence of r 50 is independent of size at all redshifts, concentration decreases more sharply in the far-UV (~1500 Å) for large galaxies at z ~ 1. This decrease in concentration is caused by a flattening of the inner ~20% of the light profile in disk-like galaxies, indicating that the central regions have different UV colors than the rest of the galaxy. We interpret this as a bulge component with older stellar populations and/or more dust. The size-dependent decrease in concentration is less dramatic at z ~ 2, suggesting that bulges are less dusty, younger, and/or less massive than the rest of the galaxy at higher redshifts.
    No preview · Article · Jul 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We estimate the UV continuum slope, $\beta$, for 923 galaxies in the range $1 < z < 8$ in the Hubble Ultradeep Field (HUDF). These data include 460 galaxies at $1<z<2$ down to an absolute magnitude $M_{UV} = -14~(\sim 0.006~L^*_{z=1}; 0.02~L^*_{z=0}$), comparable to dwarf galaxies in the local universe. We combine deep HST/UVIS photometry in F225W, F275W, F336W wavebands (UVUDF) with recent data from HST/WFC3/IR (HUDF12). Galaxies in the range $1<z<2$ are significantly bluer than local dwarf galaxies. We find their mean (median) values $\left<\beta \right> = -1.382~(-1.830)\pm0.002$ (random) $\pm0.1$ (systematic). We find comparable scatter in $\beta$ (standard deviation = 0.43) to local dwarf galaxies and 30% larger scatter than $z>2$ galaxies. We study the trends of $\beta$ with redshift and absolute magnitude for binned sub-samples and find a modest color-magnitude relation, $d\beta/dM = -0.11 \pm 0.01$ and no evolution in $d\beta/dM$ with redshift. A modest increase in dust reddening with redshift and luminosity, $\Delta E(B-V) \sim 0.1$, and a comparable increase in the dispersion of dust reddening at $z<2$, appears likely to explain the observed trends. At $z>2$, we find trends that are consistent with previous works; combining our data with the literature in the range $1<z<8$, we find a color evolution with redshift, $d\beta/dz = -0.09\pm0.01$ for low luminosity (0.05 $L^*_{z=3}$), and $d\beta/dz = -0.06\pm0.01$ for medium luminosity (0.25 $L^*_{z=3}$) galaxies.
    Full-text · Article · Jul 2014 · The Astrophysical Journal Letters
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Near infrared slitless spectroscopy with the Wide Field Camera 3, on board the Hubble Space Telescope, offers a unique opportunity to study low-mass galaxy populations at high redshift (z ~ 1-2). While most high-z surveys are biased toward massive galaxies, we are able to select sources via their emission lines that have very faint continua. We investigate the star formation rate (SFR)-stellar mass (M ) relation for about 1000 emission line galaxies identified over a wide redshift range of 0.3 z 2.3. We use the Hα emission as an accurate SFR indicator and correct the broadband photometry for the strong nebular contribution to derive accurate stellar masses down to M ~107M ☉. We focus here on a subsample of galaxies that show extremely strong emission lines (EELGs) with rest-frame equivalent widths ranging from 200 to 1500 Å. This population consists of outliers to the normal SFR-M sequence with much higher specific SFRs (>10 Gyr–1). While on-sequence galaxies follow continuous star formation processes, EELGs are thought to be caught during an extreme burst of star formation that can double their stellar mass in a period of less than 100 Myr. The contribution of the starburst population to the total star formation density appears to be larger than what has been reported for more massive galaxies in previous studies. In the complete mass range 8.2 < log(M /M ☉) <10 and a SFR lower completeness limit of about 2 M ☉ yr–1 (10 M ☉ yr–1) at z ~ 1 (z ~ 2), we find that starbursts having EWrest(Hα) > 300, 200, and 100 Å contribute up to ~13%, 18%, and 34%, respectively, to the total SFR of emission-line-selected sample at z ~ 1-2. The comparison with samples of massive galaxies shows an increase in the contribution of starbursts toward lower masses.
    Full-text · Article · Jun 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the discovery of two galaxy overdensities in the HST UDF: a proto-cluster, HUDFJ0332.4-2746.6 at $z = 1.84 \pm 0.01$, and a group, HUDFJ0332.5-2747.3 at $z =1.90 \pm 0.01$. The velocity dispersion of HUDFJ0332.4-2746.6 implies a mass of $M_{200}= (2.2 \pm 1.8) \times 10^{14} M_{\odot}$, consistent with the lack of extended X-ray emission. Neither overdensity shows evidence of a red sequence. About $50\%$ of their members show interactions and/or disturbed morphologies, which are a signature of merger remnants. Most of their morphologically classified ETGs have blue colors and show recent star-formation. These observations reveal for the first time large fractions of spectroscopically confirmed star-forming blue ETGs in proto-clusters at $z\approx 2$. These star-forming ETGs are most likely among the progenitors of the quiescent population in clusters at more recent epochs. Their mass-size relation is consistent with that of passive ETGs in clusters at $z\sim0.7-1.5$. If these galaxies are the progenitors of cluster ETGs at these lower redshifts, their size would evolve according to a similar mass-size relation. It is noteworthy that quiescent ETGs in clusters at $z=1.8-2$ also do not show any significant size evolution over this redshift range, contrary to field ETGs. The ETG fraction of our sample is $\lesssim 40\%$, compared to the typical quiescent ETG fraction of $\approx 80\%$ in cluster cores at $z< 1$. The fraction, masses and colors of the newly discovered ETGs imply that other cluster ETGs will be formed/accreted at later time.
    Full-text · Article · Mar 2014 · The Astrophysical Journal
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present the rest-frame UV wavelength dependence of the Petrosian-like half-light radius ($r_{50}$), and the concentration parameter for a sample of 198 star-forming galaxies at 0.5 < z < 1.5. We find a ~5% decrease in $r_{50}$ from 1500 \AA\ to 3000 \AA, with half-light radii at 3000 \AA\ ranging from 0.6 kpc to 6 kpc. We also find a decrease in concentration of ~0.07 (1.9 < $C_{3000}$ < 3.9). The lack of a strong relationship between $r_{50}$ and wavelength is consistent with a model in which clumpy star formation is distributed over length scales comparable to the galaxy's rest-frame optical light. While the wavelength dependence of $r_{50}$ is independent of size at all redshifts, concentration decreases more sharply in the far-UV (~1500 \AA) for large galaxies at z ~ 1. This decrease in concentration is caused by a flattening of the inner ~20% of the light profile in disk-like galaxies, indicating that the central regions have different UV colors than the rest of the galaxy. We interpret this as a bulge component with older stellar populations and/or more dust. The size-dependent decrease in concentration is less dramatic at z ~ 2, suggesting that bulges are less dusty, younger, and/or less massive than the rest of the galaxy at higher redshifts.
    Full-text · Article · Mar 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We present results from near-infrared spectroscopy of 26 emission-line galaxies at z ~ 2.2 and z ~ 1.5 obtained with the Folded-port InfraRed Echellette (FIRE) spectrometer on the 6.5 m Magellan Baade telescope. The sample was selected from the WFC3 Infrared Spectroscopic Parallels survey, which uses the near-infrared grism of the Hubble Space Telescope Wide Field Camera 3 (WFC3) to detect emission-line galaxies over 0.3 z 2.3. Our FIRE follow-up spectroscopy (R ~ 5000) over 1.0-2.5 μm permits detailed measurements of the physical properties of the z ~ 2 emission-line galaxies. Dust-corrected star formation rates for the sample range from ~5-100 M ☉ yr–1 with a mean of 29 M ☉ yr–1. We derive a median metallicity for the sample of 12 + log(O/H) = 8.34 or ~0.45 Z ☉. The estimated stellar masses range from ~108.5-109.5M ☉, and a clear positive correlation between metallicity and stellar mass is observed. The average ionization parameter measured for the sample, log U ≈ –2.5, is significantly higher than what is found for most star-forming galaxies in the local universe, but similar to the values found for other star-forming galaxies at high redshift. We derive composite spectra from the FIRE sample, from which we measure typical nebular electron densities of ~100-400 cm–3. Based on the location of the galaxies and composite spectra on diagnostic diagrams, we do not find evidence for significant active galactic nucleus activity in the sample. Most of the galaxies, as well as the composites, are offset diagram toward higher [O III]/Hβ at a given [N II]/Hα, in agreement with other observations of z 1 star-forming galaxies, but composite spectra derived from the sample do not show an appreciable offset from the local star-forming sequence on the [O III]/Hβ versus [S II]/Hα diagram. We infer a high nitrogen-to-oxygen abundance ratio from the composite spectrum, which may contribute to the offset of the high-redshift galaxies from the local star-forming sequence in the [O III]/Hβ versus [N II]/Hα diagram. We speculate that the elevated nitrogen abundance could result from substantial numbers of Wolf-Rayet stars in starbursting galaxies at z ~ 2.
    Full-text · Article · Feb 2014 · The Astrophysical Journal
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present evidence that the cosmological mean metallicity of neutral atomic hydrogen gas shows a sudden decrease at z > 4.7 down to 〈Z〉 = -2.03^(+0.09)_(-0.11), which is 6σ deviant from that predicted by a linear fit to the data at lower redshifts. This measurement is made possible by the chemical abundance measurements of 8 new damped Ly-α (DLA) systems at z > 4.7 observed with the Echellette Spectrograph and Imager on the Keck II telescope, doubling the number of measurements at z>4.7 to 16. The sudden decrease in metallicity is possibly due to the lower ultra-violet radiation field and higher density at high redshift increasing the neutral fraction of gas inside halos, such as cold flows. This would result in a new population of presumably lower metallicity DLAs, with an increased contribution to the DLA population at higher redshifts resulting in a reduced mean metallicity. While the comoving metal mass density of DLAs, P_(metals)(z)_(DLA), is flat out to z ∼ 4.3, there is evidence of a possible decrease at z > 4.7. Such a decrease is expected, as otherwise most of the metals from star-forming galaxies would reside in DLAs by z ∼ 6. While the metallicity is decreasing at high redshift, the contribution of DLAs to the total metal budget of the universe increases with redshift, with DLAs at z ∼ 4.3 accounting for ∼ 20% as many metals as produced by Lyman break galaxies.
    No preview · Article · Jan 2014 · The Astrophysical Journal Letters

Publication Stats

530 Citations
204.54 Total Impact Points

Institutions

  • 2014-2015
    • NASA
      Вашингтон, West Virginia, United States
    • California Institute of Technology
      Pasadena, California, United States
    • University of California, Santa Barbara
      • Department of Physics
      Santa Barbara, California, United States
  • 2013
    • Tufts University
      • Department of Physics and Astronomy
      Бостон, Georgia, United States
  • 2009-2010
    • University of California, San Diego
      • Department of Physics
      San Diego, California, United States